Beispiel #1
0
 def palabras_comun_idiomas_aux(self, idioma1, idioma2):
     X = pyDatalog.Variable()
     Y = pyDatalog.Variable()
     Z = pyDatalog.Variable()
     Result = pyDatalog.Variable()
     Relation.wordInCommon(X,Y,idioma1,idioma2,Z)
     return X,Z
Beispiel #2
0
 def relacion_primer_primos(self, palabra1, palabra2):
     W = pyDatalog.Variable()
     X = pyDatalog.Variable()
     Y = pyDatalog.Variable()
     Z = pyDatalog.Variable()
     (Relation.cousins(W,X,Y,Z,palabra1,palabra2))
     return Y,Z
Beispiel #3
0
 def aporte_idiomas_aux(self,idioma,idiomas,test=False):
    X = pyDatalog.Variable()
    Result = pyDatalog.Variable()
    Porcentajes = pyDatalog.Variable()
    lan_kb = []
    inferences=[]
    idiomas_lista=[]
    percentages=[]
    total = 0
    pyDatalog.create_terms('lista_vacia')
    pyDatalog.create_terms('lista_porcentaje')
    
    
    for i in idiomas:
        if(i!=idioma):
            if(not test):
                self.kb = []
                self.lan = [i]
                self.load_db_by_language()
            
            (lista_vacia(Relation.proportionPerLan(X,idioma,i))==Result)
            if(not Result.v()):
                inferences += [Relation.proportionPerLan(X,idioma,i)]
                idiomas_lista += [i]
                total += len(Relation.proportionPerLan(X,idioma,i))
                percentages += [len(Relation.proportionPerLan(X,idioma,i))]
    (lista_porcentaje(percentages,total)==Porcentajes)
    return inferences,idiomas_lista,Porcentajes
Beispiel #4
0
 def relacion_primos_nivel(self, palabra1, palabra2):
     W = pyDatalog.Variable()
     X = pyDatalog.Variable()
     Y = pyDatalog.Variable()
     Z = pyDatalog.Variable()
     w1 = len(self.primos_aux(palabra1))
     w2 = len(self.primos_aux(palabra2))
     grade = len(Relation.ances(X,Y,palabra1,palabra2))
     level = max(w1,w2)-grade
     resultado = Relation.counsingrade(W,X,Y,Z,palabra1,palabra2)
     return (resultado, level)
Beispiel #5
0
    def schedule(self,
                 from_date=None,
                 to_date=None,
                 no_status=False,
                 no_score=False):
        if from_date is None and to_date is None:
            from_date = today()

        Date, Dow, Rank, Person, Name, Initial, WfhList = vars(7)
        query = self.oncall_date(Date) & (
            Dow == get_dow(Date)) & self.is_oncall_raw(Date, Person)

        if from_date:
            query &= (Date >= from_date)
        if to_date:
            query &= (Date <= to_date)

        person = pdl.Term('person')
        person(Person) <= self.person_filt(Rank, Person, Name, Initial,
                                           WfhList)

        vars_ = [Date, Dow, Person]
        headers = ['DATE', 'DOW', 'ONCALL']

        status_vars = {
            pp: pdl.Variable('STATUS-' + pp)
            for (pp, ) in person(Person).data
        }
        score_vars = {
            pp: pdl.Variable('SCORE-' + pp)
            for (pp, ) in person(Person).data
        }
        for (pp, ) in sorted(person(Person).data):
            if not no_status:
                query &= (status_vars[pp] == self.status[Date, pp])
                vars_.append(status_vars[pp])
                headers.append(status_vars[pp]._pyD_name)
            if not no_score:
                query &= (score_vars[pp] == self.score[Date, pp])
                vars_.append(score_vars[pp])
                headers.append(score_vars[pp]._pyD_name)

        return Table(
            query=query,
            vars=vars_,
            headers=headers,
        )
Beispiel #6
0
def run_program():

    N = pyDatalog.Variable()
    F = pyDatalog.Variable()
    file_in = open("sample_datalog_program.dl", 'r')
    mc = file_in.read()
    print mc
    @pyDatalog.program()
    def _(): # the function name is ignored
        pyDatalog.load(mc)
        #pyDatalog.load("""
        #+ (factorial[1]==1)
        #(factorial[N] == F) <= (N > 1) & (F == N*factorial[N-1])
        #""")
        print(pyDatalog.ask('factorial[4]==F'))
    file_in.close()
    pass
Beispiel #7
0
    def define_rule(self, rule: Rule):
        # noinspection PyUnusedLocal
        variable_map = collections.defaultdict(lambda: pyDatalog.Variable())

        exec_str = 'self._define_term(rule.name)(*[variable_map[x.name] for x in rule.parameters]) <= '

        for rule_expr in remove_or_comparisons(rule.body):
            exec(exec_str + self._build_query_str(rule_expr, "rule_expr"),
                 locals(), globals())
Beispiel #8
0
 def primos_aux(self,palabra1):
     X = pyDatalog.Variable()
     Y = pyDatalog.Variable()
     Relation.ancestor(X,Y,palabra1)
     return Y
Beispiel #9
0
 def relacion_ancestro(self, palabra1, palabra2):
     X = pyDatalog.Variable()
     Y = pyDatalog.Variable()
     return Relation.ancestro(X,palabra1,palabra2)
Beispiel #10
0
 def relacion_tio(self, palabra1, palabra2):
     X = pyDatalog.Variable()
     Y = pyDatalog.Variable()
     Z = pyDatalog.Variable()
     return Relation.uncle(X,Y,Z,palabra1,palabra2)
Beispiel #11
0
 def relacion_parent(self, palabra1, palabra2):
     X = pyDatalog.Variable()
     (Relation.parent(X, palabra1, palabra2))
     return X
Beispiel #12
0
def vars(count):
    return [pdl.Variable('X{}'.format(next(var_id))) for _ in range(count)]
Beispiel #13
0
 def idiomas_relacionados_palabra(self, palabra):
     X = pyDatalog.Variable()
     Result = pyDatalog.Variable()
     Relation.lanByWord(X,palabra,Result)
     Result = set(eval(str(Result)))
     return X,Result
Beispiel #14
0
 def mayor_aporte_a_idioma(self,idioma,test=False):
     inferencias, idiomas, porcentajes = self.aporte_idiomas(idioma,test)
     Result = pyDatalog.Variable()
     pyDatalog.create_terms("max_index")
     print(max_index(porcentajes)==Result)
     return inferencias, idiomas[int(str(Result.v()))],porcentajes.data[0][int(str(Result.v()))]
Beispiel #15
0
def test():

    # test of expressions
    pyDatalog.load("""
        + p(a) # p is a proposition
    """)
    assert pyDatalog.ask('p(a)') == set([('a', )])

    pyDatalog.assert_fact('p', 'a', 'b')
    assert pyDatalog.ask('p(a, "b")') == set([('a', 'b')])
    pyDatalog.retract_fact('p', 'a', 'b')
    assert pyDatalog.ask('p(a, "b")') == None
    """unary facts                                                            """
    @pyDatalog.program()
    def unary():
        +z()
        assert ask(z()) == set([()])

        +p(a)
        # check that unary queries work
        assert ask(p(a)) == set([('a', )])
        assert ask(p(X)) == set([('a', )])
        assert ask(p(Y)) == set([('a', )])
        assert ask(p(_X)) == set([('a', )])
        assert ask(p(b)) == None
        assert ask(p(a) & p(b)) == None

        +p(b)
        assert ask(p(X), _fast=True) == set([('a', ), ('b', )])

        +p(b)  # facts are unique
        assert ask(p(X)) == set([('a', ), ('b', )])

        -p(b)  # retract a unary fact
        assert ask(p(X)) == set([('a', )])

        -p(a)
        assert ask(p(X)) == None
        +p(a)

        # strings and integers
        +p('c')
        assert ask(p(c)) == set([('c', )])

        +p(1)
        assert ask(p(1)) == set([(1, )])

        +n(None)
        assert ask(n(X)) == set([(None, )])
        assert ask(n(None)) == set([(None, )])

        # spaces and uppercase in strings
        +farmer('Moshe dayan')
        +farmer('omar')
        assert ask(farmer(X)) == set([('Moshe dayan', ), ('omar', )])

    # execute queries in a python program
    moshe_is_a_farmer = pyDatalog.ask("farmer('Moshe dayan')")
    assert moshe_is_a_farmer == set([('Moshe dayan', )])
    """ binary facts                                                         """

    @pyDatalog.program()
    def binary():
        +q(a, b)
        assert ask(q(a, b)) == set([('a', 'b')])
        assert ask(q(X, b)) == set([('a', 'b')])
        assert ask(q(a, Y)) == set([('a', 'b')])
        assert ask(q(a, c)) == None
        assert ask(q(X, Y)) == set([('a', 'b')])

        +q(a, c)
        assert ask(q(a, Y)) == set([('a', 'b'), ('a', 'c')])

        -q(a, c)
        assert ask(q(a, Y)) == set([('a', 'b')])

        assert ask(q(X, X)) == None
        +q(a, a)
        assert ask(q(X, X)) == set([('a', 'a')])
        -q(a, a)

    """ (in)equality                                             """

    @pyDatalog.program()
    def equality():
        assert ask(X == 1) == set([(1, )])
        assert ask(X == Y) == None
        assert ask(X == Y + 1) == None
        assert ask((X == 1) & (Y == 1) & (X == Y)) == set([(1, 1)])
        assert ask((X == 1) & (Y == 2) & (X == Y - 1)) == set([(1, 2)])
        #assert ask((X==1) & (Y==2) & (X+2==Y+1)) == set([(1,2)])
        assert ask((X == 2) & (Y == X / 2)) == set([(2, 1)])
        assert ask((X == 2) & (Y == X // 2)) == set([(2, 1)])

        assert ask((X == 1) & (Y == 1 + X)) == set([(1, 2)])
        assert ask((X == 1) & (Y == 1 - X)) == set([(1, 0)])
        assert ask((X == 1) & (Y == 2 * X)) == set([(1, 2)])
        assert ask((X == 2) & (Y == 2 / X)) == set([(2, 1)])
        assert ask((X == 2) & (Y == 2 // X)) == set([(2, 1)])

    """ Conjunctive queries                                             """

    @pyDatalog.program()
    def conjuctive():
        assert ask(q(X, Y) & p(X)) == set([('a', 'b')])

        assert ask(p(X) & p(a)) == set([('a', ), ('c', ), (1, )])
        assert ask(p(X) & p(Y) & (X == Y)) == set([('a', 'a'), ('c', 'c'),
                                                   (1, 1)])
        assert ask(p(X) & p(Y) & (X == Y) & (Y == a)) == set([('a', 'a')])

        assert ask(q(X, Y)) == set([('a', 'b')])
        assert ask(q(X, Y) & p(X)) == set([('a', 'b')])

    @pyDatalog.program()
    def equality2():
        assert ask((X == 1) & (X < X + 1)) == set([(1, )])
        assert ask((X == 1) & (Y == X)) == set([(1, 1)])
        assert ask((X == 1) & (Y == X + 1)) == set([(1, 2)])
        assert ask((X == 1) & (Y == X + 1) & (X < Y)) == set([(1, 2)])
        assert ask((X == 1) & (X < 1)) == None
        assert ask((X == 1) & (X <= 1)) == set([(1, )])
        assert ask((X == 1) & (X > 1)) == None
        assert ask((X == 1) & (X >= 1)) == set([(1, )])
        #       assert ask(X==(1,2)) == set([((1,2), (1,2))])
        assert ask(X in (1, )) == set([(1, )])
        assert ask((X == 1) & (X not in (2, ))) == set([(1, )])
        assert ask((X == 1) & ~(X in (2, ))) == set([(1, )])
        assert ask((X == 1) & (X not in (1, ))) == None
        assert ask((X == 1) & ~(X in (1, ))) == None

    @pyDatalog.program()
    def equality3():
        # equality (must be between parenthesis):
        s(X) <= (X == a)
        assert ask(s(X)) == set([('a', )])
        s(X) <= (X == 1)
        assert ask(s(X)) == set([(1, ), ('a', )])

        s(X, Y) <= p(X) & (X == Y)
        assert ask(s(a, a)) == set([('a', 'a')])
        assert ask(s(a, b)) == None
        assert ask(s(X, a)) == set([('a', 'a')])
        assert ask(s(X, Y)) == set([('a', 'a'), ('c', 'c'), (1, 1)])

    assert pyDatalog.ask('p(a)') == set([('a', )])
    """ clauses                                                         """

    @pyDatalog.program()
    def clauses():

        p2(X) <= p(X)
        assert ask(p2(a)) == set([('a', )])
        p2(X) <= p(X)

        r(X, Y) <= p(X) & p(Y)
        assert ask(r(a, a)) == set([('a', 'a')])
        assert ask(r(a, c)) == set([('a', 'c')])
        r(X, b) <= p(X)
        assert ask(r(a, b)) == set([('a', 'b')])

        -(r(X, b) <= p(X))
        assert ask(r(a, b)) == None

        # TODO more tests

        # integer variable
        for i in range(10):
            +successor(i + 1, i)
        assert ask(successor(2, 1)) == set([(2, 1)])

        # built-in
        assert abs(-3) == 3
        assert math.sin(3) == math.sin(3)

    """ in                                                         """

    pyDatalog.assert_fact('is_list', (1, 2))

    @pyDatalog.program()
    def _in():
        assert ((X == 1) & (X in (1, 2))) == [(1, )]
        _in(X) <= (X in [1, 2])
        assert ask(_in(1)) == set([(1, )])
        assert ask(_in(9)) == None
        assert ask(_in(X)) == set([(1, ), (2, )])

        _in2(X) <= is_list(Y) & (X in Y)
        assert ask(_in2(X)) == set([(1, ), (2, )])

        assert ask((Y == (1, 2)) & (X == 1) & (X in Y)) == set([((1, 2), 1)])
        assert ask((Y == (1, 2)) & (X == 1) & (X in Y + (3, ))) == set([
            ((1, 2), 1)
        ])

    """ recursion                                                         """

    @pyDatalog.program()
    def recursion():
        +even(0)
        even(N) <= successor(N, N1) & odd(N1)
        odd(N) <= ~even(N)
        assert ask(even(0)) == set([(0, )])
        assert ask(even(X)) == set([(4, ), (10, ), (6, ), (0, ), (2, ), (8, )])
        assert ask(even(10)) == set([(10, )])
        assert ask(odd(1)) == set([(1, )])
        assert ask(odd(5)) == set([(5, )])
        assert ask(even(5)) == None

    """ recursion with expressions                                         """
    # reset the engine
    pyDatalog.clear()

    @pyDatalog.program()
    def recursive_expression():

        predecessor(X, Y) <= (X == Y - 1)
        assert ask(predecessor(X, 11)) == set([(10, 11)])

        p(X, Z) <= (Y == Z - 1) & (X == Y - 1)
        assert ask(p(X, 11)) == set([(9, 11)])

        # odd and even
        +even(0)
        even(N) <= (N > 0) & odd(N - 1)
        assert ask(even(0)) == set([(0, )])
        odd(N) <= (N > 0) & ~even(N)
        assert ask(even(0)) == set([(0, )])
        assert ask(odd(1)) == set([(1, )])
        assert ask(odd(5)) == set([(5, )])
        assert ask(even(5)) == None
        assert ask((X == 3) & odd(X + 2)) == set([(3, )])

    # Factorial
    pyDatalog.clear()

    @pyDatalog.program()
    def factorial():
        #        (factorial[N] == F) <= (N < 1) & (F == -factorial[-N])
        #        + (factorial[1]==1)
        #        (factorial[N] == F) <= (N > 1) & (F == N*factorial[N-1])
        #        assert ask(factorial[1] == F) == set([(1, 1)])
        #        assert ask(factorial[4] == F) == set([(4, 24)])
        #        assert ask(factorial[-4] == F) == set([(-4, -24)])
        pass

    # Fibonacci
    pyDatalog.clear()

    @pyDatalog.program()
    def fibonacci():
        (fibonacci[N] == F) <= (N == 0) & (F == 0)
        (fibonacci[N] == F) <= (N == 1) & (F == 1)
        (fibonacci[N]
         == F) <= (N > 1) & (F == fibonacci[N - 1] + fibonacci[N - 2])
        assert ask(fibonacci[1] == F) == set([(1, 1)])
        assert ask(fibonacci[4] == F) == set([(4, 3)])
        assert ask(fibonacci[18] == F) == set([(18, 2584)])

    # string manipulation
    @pyDatalog.program()
    def _lambda():
        split(X, Y, Z) <= (X == Y + '-' + Z)
        assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')])
        split(X, Y, Z) <= (Y == (lambda X: X.split('-')[0])) & (Z == (
            lambda X: X.split('-')[1]))
        assert ask(split('a-b', Y, Z)) == set([('a-b', 'a', 'b')])
        assert ask(split(X, 'a', 'b')) == set([('a-b', 'a', 'b')])

        (two[X] == Z) <= (Z == X + (lambda X: X))
        assert ask(two['A'] == Y) == set([('A', 'AA')])

    """ negation                                                     """

    @pyDatalog.program()
    def _negation():
        +p(a, b)
        assert ask(~p(X, b)) == None
        assert ask(~p(X, c)) == set([('X', 'c')])

    pyDatalog.load("""
        + even(0)
        even(N) <= (N > 0) & (N1==N-1) & odd(N1)
        odd(N) <= (N2==N+2) & ~ even(N) & (N2>0)
    """)
    assert pyDatalog.ask('~ odd(7)', _fast=True) == None
    assert pyDatalog.ask('~ odd(2)', _fast=True) == set([(2, )])
    assert pyDatalog.ask('odd(3)', _fast=True) == set([(3, )])
    assert pyDatalog.ask('odd(3)') == set([(3, )])
    assert pyDatalog.ask('odd(5)', _fast=True) == set([(5, )])
    assert pyDatalog.ask('odd(5)') == set([(5, )])
    assert pyDatalog.ask('even(5)', _fast=True) == None
    assert pyDatalog.ask('even(5)') == None
    """ functions                                                         """
    pyDatalog.clear()

    @pyDatalog.program()
    def function():
        +(f[a] == b)
        assert ask(f[X] == Y) == set([('a', 'b')])
        assert ask(f[X] == b) == set([('a', 'b')
                                      ])  #TODO remove 'b' from result
        assert ask(f[a] == X) == set([('a', 'b')])
        assert ask(f[a] == b) == set([('a', 'b')])

        +(f[a] == c)
        assert ask(f[a] == X) == set([('a', 'c')])

        +(f[a] == a)
        assert ask(f[f[a]] == X) == set([('a', )])
        assert ask(f[X] == f[a]) == set([('a', )])
        assert ask(f[X] == f[a] + '') == set([('a', )])
        -(f[a] == a)
        assert ask(f[f[a]] == X) == None

        +(f[a] == None)
        assert (ask(f[a] == X)) == set([('a', None)])
        +(f[a] == (1, 2))
        assert (ask(f[a] == X)) == set([('a', (1, 2))])
        assert (ask(f[X] == (1, 2))) == set([('a', (1, 2))])

        +(f[a] == c)

        +(f2[a, x] == b)
        assert ask(f2[a, x] == b) == set([('a', 'x', 'b')])

        +(f2[a, x] == c)
        assert ask(f2[a, x] == X) == set([('a', 'x', 'c')])

        g[X] = f[X] + f[X]
        assert (ask(g[a] == X)) == set([('a', 'cc')])

        h(X, Y) <= (f[X] == Y)
        assert (ask(h(X, 'c'))) == set([('a', 'c')])
        assert (ask(h(X, Y))) == set([('a', 'c')])

    @pyDatalog.program()
    def function_comparison():
        assert ask(f[X] == Y) == set([('a', 'c')])
        assert ask(f[a] < 'd') == set([('c', )])
        assert ask(f[a] > 'a') == set([('c', )])
        assert ask(f[a] >= 'c') == set([('c', )])
        assert ask(f[a] > 'c') == None
        assert ask(f[a] <= 'c') == set([('c', )])
        assert ask(f[a] > 'c') == None
        assert ask(f[a] in [
            'c',
        ]) == set([('c', )])

        assert ask((f[X] == 'c') & (f[Y] == f[X])) == set([('a', 'a')])
        assert ask((f[X] == 'c') & (f[Y] == f[X] + '')) == set([('a', 'a')])
        assert ask((f[X] == 'c') & (f[Y] == (lambda X: 'c'))) == set([('a',
                                                                       'a')])

        assert ask(f[X] == Y + '') == None
        assert ask((Y == 'c') & (f[X] == Y + '')) == set([('c', 'a')])
        assert ask((Y == 'c') & (f[X] <= Y + '')) == set([('c', 'a')])
        assert ask((Y == 'c') & (f[X] < Y + '')) == None
        assert ask((Y == 'c') & (f[X] < 'd' + Y + '')) == set([('c', 'a')])
        assert ask((Y == ('a', 'c')) & (f[X] in Y)) == set([(('a', 'c'), 'a')])
        assert ask((Y == ('a', 'c')) & (f[X] in (Y + ('z', )))) == set([
            (('a', 'c'), 'a')
        ])

        assert ask(f[X] == f[X] + '') == set([('a', )])

    @pyDatalog.program()
    def function_negation():
        assert not (ask(~(f[a] < 'd')))
        assert not (ask(~(f[X] < 'd')))
        assert ask(~(f[a] in ('d', )))

    """ aggregates                                                         """

    pyDatalog.clear()

    @pyDatalog.program()
    def sum():
        +p(a, c, 1)
        +p(b, b, 4)
        +p(a, b, 1)

        assert (sum(1, 2)) == 3
        (a_sum[X] == sum(Y, key=Z)) <= p(X, Z, Y)
        assert ask(a_sum[X] == Y) == set([('a', 2), ('b', 4)])
        assert ask(a_sum[a] == X) == set([('a', 2)])
        assert ask(a_sum[a] == 2) == set([('a', 2)])
        assert ask(a_sum[X] == 4) == set([('b', 4)])
        assert ask(a_sum[c] == X) == None
        assert ask((a_sum[X] == 2) & (p(X, Z, Y))) == set([('a', 'c', 1),
                                                           ('a', 'b', 1)])

        (a_sum2[X] == sum(Y, for_each=X)) <= p(X, Z, Y)
        assert ask(a_sum2[a] == X) == set([('a', 1)])

        (a_sum3[X] == sum(Y, key=(X, Z))) <= p(X, Z, Y)
        assert ask(a_sum3[X] == Y) == set([('a', 2), ('b', 4)])
        assert ask(a_sum3[a] == X) == set([('a', 2)])

    @pyDatalog.program()
    def len():
        assert (len((1, 2))) == 2
        (a_len[X] == len(Z)) <= p(X, Z, Y)
        assert ask(a_len[X] == Y) == set([('a', 2), ('b', 1)])
        assert ask(a_len[a] == X) == set([('a', 2)])
        assert ask(a_len[X] == 1) == set([('b', 1)])
        assert ask(a_len[X] == 5) == None

        (a_lenY[X] == len(Y)) <= p(X, Z, Y)
        assert ask(a_lenY[a] == X) == set([('a', 1)])
        assert ask(a_lenY[c] == X) == None

        (a_len2[X, Y] == len(Z)) <= p(X, Y, Z)
        assert ask(a_len2[a, b] == X) == set([('a', 'b', 1)])
        assert ask(a_len2[a, X] == Y) == set([('a', 'b', 1), ('a', 'c', 1)])

        +q(a, c, 1)
        +q(a, b, 2)
        +q(b, b, 4)

    @pyDatalog.program()
    def concat():
        (a_concat[X] == concat(Y, key=Z, sep='+')) <= q(X, Y, Z)
        assert ask(a_concat[X] == Y) == set([('b', 'b'), ('a', 'c+b')])
        assert ask(a_concat[a] == 'c+b') == set([('a', 'c+b')])
        assert ask(a_concat[a] == X) == set([('a', 'c+b')])
        assert ask(a_concat[X] == b) == set([('b', 'b')])

        (a_concat2[X] == concat(Y, order_by=(Z, ), sep='+')) <= q(X, Y, Z)
        assert ask(a_concat2[a] == X) == set([('a', 'c+b')])

        (a_concat3[X] == concat(Y, key=(-Z, ), sep='-')) <= q(X, Y, Z)
        assert ask(a_concat3[a] == X) == set([('a', 'b-c')])

    @pyDatalog.program()
    def min():
        assert min(1, 2) == 1
        (a_min[X] == min(Y, key=Z)) <= q(X, Y, Z)
        assert ask(a_min[X] == Y) == set([('b', 'b'), ('a', 'c')])
        assert ask(a_min[a] == 'c') == set([('a', 'c')])
        assert ask(a_min[a] == X) == set([('a', 'c')])
        assert ask(a_min[X] == 'b') == set([('b', 'b')])

        (a_minD[X] == min(Y, order_by=-Z)) <= q(X, Y, Z)
        assert ask(a_minD[a] == X) == set([('a', 'b')])

        (a_min2[X, Y] == min(Z, key=(X, Y))) <= q(X, Y, Z)
        assert ask(a_min2[Y, b] == X) == set([('a', 'b', 2), ('b', 'b', 4)])
        assert ask(a_min2[Y, Y] == X) == set([('b', 'b', 4)]), "a_min2"

        (a_min3[Y] == min(Z, key=(-X, Z))) <= q(X, Y, Z)
        assert ask(a_min3[b] == Y) == set([('b', 4)]), "a_min3"

    @pyDatalog.program()
    def max():
        assert max(1, 2) == 2
        (a_max[X] == max(Y, key=-Z)) <= q(X, Y, Z)
        assert ask(a_max[a] == X) == set([('a', 'c')])

        (a_maxD[X] == max(Y, order_by=Z)) <= q(X, Y, Z)
        assert ask(a_maxD[a] == X) == set([('a', 'b')])

    @pyDatalog.program()
    def rank():
        (a_rank1[Z] == rank(for_each=Z, order_by=Z)) <= q(X, Y, Z)
        assert ask(a_rank1[X] == Y) == set([(1, 0), (2, 0), (4, 0)])
        assert ask(a_rank1[X] == 0) == set([(1, 0), (2, 0), (4, 0)])
        assert ask(a_rank1[1] == X) == set([(1, 0)])
        assert ask(a_rank1[1] == 0) == set([(1, 0)])
        assert ask(a_rank1[1] == 1) == None

        # rank
        (a_rank[X, Y] == rank(for_each=(X, Y2),
                              order_by=Z2)) <= q(X, Y, Z) & q(X, Y2, Z2)
        assert ask(a_rank[X, Y] == Z) == set([('a', 'b', 1), ('a', 'c', 0),
                                              ('b', 'b', 0)])
        assert ask(a_rank[a, b] == 1) == set([('a', 'b', 1)])
        assert ask(a_rank[a, b] == Y) == set([('a', 'b', 1)])
        assert ask(a_rank[a, X] == 0) == set([('a', 'c', 0)])
        assert ask(a_rank[a, X] == Y) == set([('a', 'b', 1), ('a', 'c', 0)])
        assert ask(a_rank[X, Y] == 1) == set([('a', 'b', 1)])
        assert ask(a_rank[a, y] == Y) == None
        # reversed
        (b_rank[X, Y] == rank(for_each=(X, Y2),
                              order_by=-Z2)) <= q(X, Y, Z) & q(X, Y2, Z2)
        assert ask(b_rank[X, Y] == Z) == set([('a', 'b', 0), ('a', 'c', 1),
                                              ('b', 'b', 0)])
        assert ask(b_rank[a, b] == 0) == set([('a', 'b', 0)])
        assert ask(b_rank[a, b] == Y) == set([('a', 'b', 0)])
        assert ask(b_rank[a, X] == 1) == set([('a', 'c', 1)])
        assert ask(b_rank[a, X] == Y) == set([('a', 'b', 0), ('a', 'c', 1)])
        assert ask(b_rank[X, Y] == 0) == set([('a', 'b', 0), ('b', 'b', 0)])
        assert ask(b_rank[a, y] == Y) == None

    @pyDatalog.program()
    def running_sum():
        # running_sum
        (a_run_sum[X, Y] == running_sum(
            Z2, for_each=(X, Y2), order_by=Z2)) <= q(X, Y, Z) & q(X, Y2, Z2)
        assert ask(a_run_sum[X, Y] == Z) == set([('a', 'b', 3), ('a', 'c', 1),
                                                 ('b', 'b', 4)])
        assert ask(a_run_sum[a, b] == 3) == set([('a', 'b', 3)])
        assert ask(a_run_sum[a, b] == Y) == set([('a', 'b', 3)])
        assert ask(a_run_sum[a, X] == 1) == set([('a', 'c', 1)])
        assert ask(a_run_sum[a, X] == Y) == set([('a', 'b', 3), ('a', 'c', 1)])
        assert ask(a_run_sum[X, Y] == 4) == set([('b', 'b', 4)])
        assert ask(a_run_sum[a, y] == Y) == None

        (b_run_sum[X, Y] == running_sum(
            Z2, for_each=(X, Y2), order_by=-Z2)) <= q(X, Y, Z) & q(X, Y2, Z2)
        assert ask(b_run_sum[X, Y] == Z) == set([('a', 'b', 2), ('a', 'c', 3),
                                                 ('b', 'b', 4)])
        assert ask(b_run_sum[a, b] == 2) == set([('a', 'b', 2)])
        assert ask(b_run_sum[a, b] == Y) == set([('a', 'b', 2)])
        assert ask(b_run_sum[a, X] == 3) == set([('a', 'c', 3)])
        assert ask(b_run_sum[a, X] == Y) == set([('a', 'b', 2), ('a', 'c', 3)])
        assert ask(b_run_sum[X, Y] == 4) == set([('b', 'b', 4)])
        assert ask(b_run_sum[a, y] == Y) == None

    """ simple in-line queries                                        """
    X = pyDatalog.Variable()
    assert ((X == 1) >= X) == 1
    assert ((X == 1) & (X != 2) >= X) == 1
    assert set(X._in((1, 2))) == set([(1, ), (2, )])
    assert ((X == 1) & (X._in((1, 2)))) == [(1, )]
    """ interface with python classes                                        """

    class A(pyDatalog.Mixin):
        def __init__(self, b):
            super(A, self).__init__()
            self.b = b

        def __repr__(self):
            return self.b

        @pyDatalog.program(
        )  # indicates that the following method contains pyDatalog clauses
        def _():
            (A.c[X] == N) <= (A.b[X] == N)
            (A.len[X] == len(N)) <= (A.b[X] == N)

        @classmethod
        def _pyD_x1(cls, X):
            if X.is_const() and X.id.b == 'za':
                yield (X.id, )
            else:
                for X in pyDatalog.metaMixin.__refs__[cls]:
                    if X.b == 'za':
                        yield (X, )

    a = A('a')
    b = A('b')
    assert a.c == 'a'
    X, Y = pyDatalog.variables(2)
    assert (A.c[X] == 'a') == [(a, )]
    assert (A.c[X] == 'a')[0] == (a, )
    assert list(X.data) == [a]
    assert X.v() == a
    assert ((A.c[a] == X) >= X) == 'a'
    assert ((A.c[a] == X) & (A.c[a] == X) >= X) == 'a'
    assert ((A.c[a] == X) & (A.c[b] == X) >= X) == None
    (A.c[X] == 'b') & (A.b[X] == 'a')
    assert list(X.data) == []
    (A.c[X] == 'a') & (A.b[X] == 'a')
    assert list(X.data) == [a]
    result = (A.c[X] == 'a') & (A.b[X] == 'a')
    assert result == [(a, )]
    assert (A.c[a] == 'a') == [()]
    assert (A.b[a] == 'a') == [()]
    assert (A.c[a] == 'a') & (A.b[a] == 'a') == [()]
    assert (A.b[a] == 'f') == []
    assert ((A.c[a] == 'a') & (A.b[a] == 'f')) == []
    """ filters on python classes                                        """
    assert (A.b[X] != Y) == [(a, None), (b, None)]
    assert (A.b[X] != 'a') == [(b, )]
    assert (A.b[X] != 'z') == [(a, ), (b, )]
    assert (A.b[a] != 'a') == []
    assert list(A.b[b] != 'a') == [()]
    assert ((A.b[b] != 'a') & (A.b[b] != 'z')) == [()]

    assert (A.b[X] < Y) == [(a, None), (b, None)]
    assert (A.b[X] < 'a') == []
    assert (A.b[X] < 'z') == [(a, ), (b, )]
    assert (A.b[a] < 'b') == [()]
    assert (A.b[b] < 'a') == []
    assert ((A.b[b] < 'z') & (A.b[b] != 'z')) == [()]

    assert (A.b[X] <= 'a') == [(a, )]
    assert (A.b[X] <= 'z') == [(a, ), (b, )]
    assert (A.b[a] <= 'b') == [()]
    assert (A.b[b] <= 'a') == []
    assert ((A.b[b] <= 'z') & (A.b[b] != 'z')) == [()]

    assert (A.b[X] > 'a') == [(b, )]
    assert (A.b[X] >= 'a') == [(a, ), (b, )]

    assert (A.c[X] <= 'a') == [(a, )]
    assert (A.c[X] <= 'a' + '') == [(a, )]

    assert (A.c[X]._in(('a', ))) == [(a, )]
    assert (A.c[X]._in(('a', ) + ('z', ))) == [(a, )]
    assert ((Y == ('a', )) & (A.c[X]._in(Y))) == [(('a', ), a)
                                                  ]  # TODO make ' in ' work

    assert ((Y == ('a', )) & (A.c[X]._in(Y + ('z', )))) == [
        (('a', ), a)
    ]  # TODO make ' in ' work
    assert (A.c[X]._in(('z', ))) == []

    # more complex queries
    assert ((Y == 'a') & (A.b[X] != Y)) == [
        ('a', b)
    ]  # order of appearance of the variables !

    assert (A.len[X] == Y) == [(b, 1), (a, 1)]
    assert (A.len[a] == Y) == [(1, )]
    """ subclass                                              """

    class Z(A):
        def __init__(self, z):
            super(Z, self).__init__(z + 'a')
            self.z = z

        def __repr__(self):
            return self.z

        @pyDatalog.program(
        )  # indicates that the following method contains pyDatalog clauses
        def _():
            (Z.w[X] == N) <= (Z.z[X] != N)

        @classmethod
        def _pyD_query(cls, pred_name, args):
            if pred_name == 'Z.pred':
                if args[0].is_const() and args[0].id.b != 'za':
                    yield (args[0].id, )
                else:
                    for X in pyDatalog.metaMixin.__refs__[cls]:
                        if X.b != 'za':
                            yield (X, )
            else:
                raise AttributeError

    z = Z('z')
    assert z.z == 'z'
    assert (Z.z[X] == 'z') == [(z, )]
    assert ((Z.z[X] == 'z') & (Z.z[X] > 'a')) == [(z, )]
    assert list(X.data) == [z]
    try:
        a.z == 'z'
    except Exception as e:
        e_message = e.message if hasattr(e, 'message') else e.args[0]
        if e_message != "Predicate without definition (or error in resolver): A.z[1]==/2":
            print(e_message)
    else:
        assert False

    try:
        (Z.z[a] == 'z') == None
    except Exception as e:
        e_message = e.message if hasattr(e, 'message') else e.args[0]
        if e_message != "Object is incompatible with the class that is queried.":
            print(e_message)
    else:
        assert False

    assert (Z.b[X] == Y) == [(z, 'za')]
    assert (Z.c[X] == Y) == [(z, 'za')]
    assert ((Z.c[X] == Y) & (Z.c[X] > 'a')) == [(z, 'za')]
    assert (Z.c[X] > 'a') == [(z, )]
    assert ((Z.c[X] > 'a') & (A.c[X] == 'za')) == [(z, )]
    assert (A.c[X] == 'za') == [(z, )]
    assert (A.c[z] == 'za') == [()]
    assert (z.b) == 'za'
    assert (z.c) == 'za'

    w = Z('w')
    w = Z('w')  # duplicated to test __refs__[cls]
    assert (Z.x(X)) == [(z, )]
    assert not (~Z.x(z))
    assert ~Z.x(w)
    assert ~(Z.z[w] == 'z')
    assert (Z.pred(X)) == [(w, )]  # not duplicated !
    assert (Z.pred(X) & ~(Z.z[X] >= 'z')) == [(w, )]
    assert (Z.x(X) & ~(Z.pred(X))) == [(z, )]

    assert (Z.len[X] == Y) == [(w, 1), (z, 1)]
    assert (Z.len[z] == Y) == [(1, )]

    # TODO print (A.b[w]==Y)
    """ python resolvers                                              """

    @pyDatalog.predicate()
    def p(X, Y):
        yield (1, 2)
        yield (2, 3)

    assert pyDatalog.ask('p(X,Y)') == set([(1, 2), (2, 3)])
    assert pyDatalog.ask('p(1,Y)') == set([(1, 2)])
    assert pyDatalog.ask('p(1,2)') == set([(1, 2)])
    """ error detection                                              """

    @pyDatalog.program()
    def _():
        pass

    error = False
    try:
        _()
    except:
        error = True
    assert error

    def assert_error(code, message='^$'):
        _error = False
        try:
            pyDatalog.load(code)
        except Exception as e:
            e_message = e.message if hasattr(
                e, 'message') else e.args[0]  # python 2 and 3
            if not re.match(message, e_message):
                print(e_message)
            _error = True
        assert _error

    def assert_ask(code, message='^$'):
        _error = False
        try:
            pyDatalog.ask(code)
        except Exception as e:
            e_message = e.message if hasattr(e, 'message') else e.args[0]
            if not re.match(message, e_message):
                print(e_message)
            _error = True
        assert _error

    assert_error('ask(z(a),True)', 'Too many arguments for ask \!')
    assert_error('ask(z(a))',
                 'Predicate without definition \(or error in resolver\): z/1')
    assert_error(
        "+ farmer(farmer(moshe))",
        "Syntax error: Literals cannot have a literal as argument : farmer\[\]"
    )
    assert_error(
        "+ manager[Mary]==John",
        "Left-hand side of equality must be a symbol or function, not an expression."
    )
    assert_error(
        "manager[X]==Y <= (X==Y)",
        "Syntax error: please verify parenthesis around \(in\)equalities")
    assert_error("p(X) <= (Y==2)", "Can't create clause")
    assert_error(
        "p(X) <= X==1 & X==2",
        "Syntax error: please verify parenthesis around \(in\)equalities")
    assert_error("p(X) <= (manager[X]== min(X))",
                 "Error: argument missing in aggregate")
    assert_error("p(X) <= (manager[X]== max(X, order_by=X))",
                 "Aggregation cannot appear in the body of a clause")
    assert_error("q(min(X, order_by=X)) <= p(X)",
                 "Syntax error: Incorrect use of aggregation\.")
    assert_error(
        "manager[X]== min(X, order_by=X) <= manager(X)",
        "Syntax error: please verify parenthesis around \(in\)equalities")
    assert_error(
        "(manager[X]== min(X, order_by=X+2)) <= manager(X)",
        "order_by argument of aggregate must be variable\(s\), not expression\(s\)."
    )
    assert_error("ask(X<1)",
                 'Error: left hand side of comparison must be bound: =X<1/1')
    assert_error("ask(X<Y)",
                 'Error: left hand side of comparison must be bound: =X<Y/2')
    assert_error("ask(1<Y)",
                 'Error: left hand side of comparison must be bound: =Y>1/1')
    assert_error(
        "ask( (A.c[X]==Y) & (Z.c[X]==Y))",
        "TypeError: First argument of Z.c\[1\]==\('.','.'\) must be a Z, not a A "
    )
    assert_ask(
        "A.u[X]==Y",
        "Predicate without definition \(or error in resolver\): A.u\[1\]==/2")
    assert_ask(
        "A.u[X,Y]==Z",
        "Predicate without definition \(or error in resolver\): A.u\[2\]==/3")
    assert_error('(a_sum[X] == sum(Y, key=Y)) <= p(X, Z, Y)',
                 "Error: Duplicate definition of aggregate function.")
    assert_error(
        '(two(X)==Z) <= (Z==X+(lambda X: X))',
        'Syntax error near equality: consider using brackets. two\(X\)')
    assert_error('p(X) <= sum(X, key=X)', 'Invalid body for clause')
    assert_error(
        'ask(- manager[X]==1)',
        "Left-hand side of equality must be a symbol or function, not an expression."
    )
    assert_error("p(X) <= (X=={})", "unhashable type: 'dict'")
    """ SQL Alchemy                    """

    from sqlalchemy import create_engine
    from sqlalchemy import Column, Integer, String, ForeignKey
    from sqlalchemy.ext.declarative import declarative_base
    from sqlalchemy.orm import sessionmaker, relationship

    engine = create_engine('sqlite:///:memory:',
                           echo=False)  # create database in memory
    Session = sessionmaker(bind=engine)
    session = Session()

    Base = declarative_base(cls=pyDatalog.Mixin,
                            metaclass=pyDatalog.sqlMetaMixin)
    Base.session = session

    class Employee(Base):  # --> Employee inherits from the Base class
        __tablename__ = 'employee'

        name = Column(String, primary_key=True)
        manager_name = Column(String, ForeignKey('employee.name'))
        salary = Column(Integer)

        def __init__(self, name, manager_name, salary):
            super(Employee, self).__init__()
            self.name = name
            self.manager_name = manager_name  # direct manager of the employee, or None
            self.salary = salary  # monthly salary of the employee

        def __repr__(self):  # specifies how to display the employee
            return "Employee: %s" % self.name

        @pyDatalog.program(
        )  # --> the following function contains pyDatalog clauses
        def Employee():
            (Employee.manager[X]
             == Y) <= (Employee.manager_name[X] == Z) & (Z == Employee.name[Y])
            # the salary class of employee X is computed as a function of his/her salary
            # this statement is a logic equality, not an assignment !
            Employee.salary_class[X] = Employee.salary[X] // 1000

            # all the indirect managers of employee X are derived from his manager, recursively
            Employee.indirect_manager(
                X, Y) <= (Employee.manager[X] == Y) & (Y != None)
            Employee.indirect_manager(
                X, Y) <= (Employee.manager[X]
                          == Z) & Employee.indirect_manager(Z, Y) & (Y != None)

            # count the number of reports of X
            (Employee.report_count[X] == len(Y)) <= Employee.indirect_manager(
                Y, X)

            Employee.p(X, Y) <= (Y <= Employee.salary[X] + 1)

    Base.metadata.create_all(engine)

    John = Employee('John', None, 6800)
    Mary = Employee('Mary', 'John', 6300)
    Sam = Employee('Sam', 'Mary', 5900)

    session.add(John)
    session.add(Mary)
    session.add(Sam)
    session.commit()

    assert (John.salary_class == 6)

    X = pyDatalog.Variable()
    result = (Employee.salary[X] == 6300
              )  # notice the similarity to a pyDatalog query
    assert result == [
        (Mary, ),
    ]
    assert (X._value() == [
        Mary,
    ])  # prints [Employee: Mary]
    assert (X.v() == Mary)  # prints Employee:Mary

    result = (Employee.indirect_manager(Mary, X))
    assert result == [
        (John, ),
    ]
    assert (X.v() == John)  # prints [Employee: John]

    Mary.salary_class = ((Employee.salary_class[Mary] == X) >= X)
    Mary.salary = 10000
    assert Mary.salary_class != ((Employee.salary_class[Mary] == X) >= X)

    X, Y, N = pyDatalog.variables(3)
    result = (Employee.salary[X] == 6800) & (Employee.name[X] == N)
    assert result == [
        (John, 'John'),
    ]
    assert N.v() == 'John'

    result = (Employee.salary[X] == Employee.salary[X])
    assert result == [(John, ), (Mary, ), (Sam, )]

    result = (Employee.p(X, 1))
    assert result == [(John, ), (Mary, ), (Sam, )]

    result = (Employee.salary[X] < Employee.salary[X] + 1)
    assert result == [(John, ), (Mary, ), (Sam, )]

    result = (Employee.salary[John] == N) & Employee.p(John, N)
    assert result == [(6800, )]
    result = (Employee.salary[X] == 6800) & (Employee.salary[X]
                                             == N) & Employee.p(X, N)
    assert result == [(John, 6800)]
    """
Beispiel #16
0
 def relacion_palabra_idioma(self, palabra, idioma):
     X = pyDatalog.Variable()
     Relation.hasLanAndWord[X,idioma, palabra]
     return X
Beispiel #17
0
 def palabras_originadas(self,palabra,idioma):
     X = pyDatalog.Variable()
     Result = pyDatalog.Variable()
     Relation.originatedWords(X,palabra,idioma,Result)
     return X,Result
Beispiel #18
0
 def relacion_hermandad(self, palabra1, palabra2):
     X = pyDatalog.Variable()
     Y = pyDatalog.Variable()
     Relation.siblings(X,Y,palabra1, palabra2)
     return X,Y
Beispiel #19
0
# get all ingredients of an recipe
pyDatalog.create_terms('hasIngredient, recipeIngredients')
hasIngredient(X, Y, Z) <= (containIngredient.RezeptId[A] == X) & (containIngredient.LebensmittelId[A] == Y) & (containIngredient.Menge[A] == Z)
Recipe.recipeIngredients(X, Y) <= (containRecipe.RezeptId[A] == X) & (containRecipe.KomponentenRezeptId[A] == Z) & (Recipe.hasIngredient(Z, Y))
# get weight of recipe
pyDatalog.create_terms('weight')
#weight(X) <=

# get Calories of Recipes
pyDatalog.create_terms('calorie')
#calorie(X) <=



Y = pyDatalog.Variable()
Ingredient.Fleisch[Y] == 0
print(Y)

X = pyDatalog.Variable()
Recipe.Name[X] == "Pizzateig"
print(X)

result = pyDatalog.ask('hasIngredient(X, Y, Z)')
print(result)





def make_vars(*names):
    return [pdl.Variable(_) for _ in names]