Beispiel #1
0
    if not opts_dict['cumul']:
        gm3d,gm2d,var_list = pyEnsLib.generate_global_mean_for_summary(o_files,var3_list_loc,var2_list_loc , is_SE, False,opts_dict)
    if me.get_rank() == 0 and (verbose == True):
        print "Finish calculating global means ....."

    # Calculate RMSZ scores  
    if (not opts_dict['gmonly']) | (opts_dict['cumul']):
        if me.get_rank() == 0 and (verbose == True):
            print "Calculating RMSZ scores ....."
        zscore3d,zscore2d,ens_avg3d,ens_stddev3d,ens_avg2d,ens_stddev2d,temp1,temp2=pyEnsLib.calc_rmsz(o_files,var3_list_loc,var2_list_loc,is_SE,opts_dict)    

    # Calculate max norm ensemble
    if opts_dict['maxnorm']:
        if me.get_rank() == 0 and (verbose == True):
            print "Calculating max norm of ensembles ....."
        pyEnsLib.calculate_maxnormens(opts_dict,var3_list_loc)
        pyEnsLib.calculate_maxnormens(opts_dict,var2_list_loc)

    if opts_dict['mpi_enable']:

        if not opts_dict['cumul']:
            # Gather the 3d variable results from all processors to the master processor
            slice_index=get_stride_list(len(d3_var_names),me)
         
            # Gather global means 3d results
            gm3d=gather_npArray(gm3d,me,slice_index,(len(d3_var_names),len(o_files)))
            if not opts_dict['gmonly']:
                # Gather zscore3d results
                zscore3d=gather_npArray(zscore3d,me,slice_index,(len(d3_var_names),len(o_files)))

                # Gather ens_avg3d and ens_stddev3d results
Beispiel #2
0
def main(argv):

    # Get command line stuff and store in a dictionary
    s = 'tag= compset= esize= tslice= res= sumfile= indir= sumfiledir= mach= verbose jsonfile= mpi_enable maxnorm gmonly popens cumul regx= startMon= endMon= fIndex='
    optkeys = s.split()
    try:
        opts, args = getopt.getopt(argv, "h", optkeys)
    except getopt.GetoptError:
        pyEnsLib.EnsSum_usage()
        sys.exit(2)

    # Put command line options in a dictionary - also set defaults
    opts_dict = {}

    # Defaults
    opts_dict['tag'] = 'cesm2_0_beta08'
    opts_dict['compset'] = 'F2000'
    opts_dict['mach'] = 'cheyenne'
    opts_dict['esize'] = 350
    opts_dict['tslice'] = 1
    opts_dict['res'] = 'f19_f19'
    opts_dict['sumfile'] = 'ens.summary.nc'
    opts_dict['indir'] = './'
    opts_dict['sumfiledir'] = './'
    opts_dict['jsonfile'] = 'exclude_empty.json'
    opts_dict['verbose'] = False
    opts_dict['mpi_enable'] = False
    opts_dict['maxnorm'] = False
    opts_dict['gmonly'] = True
    opts_dict['popens'] = False
    opts_dict['cumul'] = False
    opts_dict['regx'] = 'test'
    opts_dict['startMon'] = 1
    opts_dict['endMon'] = 1
    opts_dict['fIndex'] = 151

    # This creates the dictionary of input arguments
    opts_dict = pyEnsLib.getopt_parseconfig(opts, optkeys, 'ES', opts_dict)

    verbose = opts_dict['verbose']

    st = opts_dict['esize']
    esize = int(st)

    if not (opts_dict['tag'] and opts_dict['compset'] and opts_dict['mach']
            or opts_dict['res']):
        print 'Please specify --tag, --compset, --mach and --res options'
        sys.exit()

    # Now find file names in indir
    input_dir = opts_dict['indir']
    # The var list that will be excluded
    ex_varlist = []
    inc_varlist = []

    # Create a mpi simplecomm object
    if opts_dict['mpi_enable']:
        me = simplecomm.create_comm()
    else:
        me = simplecomm.create_comm(not opts_dict['mpi_enable'])

    if me.get_rank() == 0:
        print 'Running pyEnsSum!'

    if me.get_rank() == 0 and (verbose == True):
        print opts_dict
        print 'Ensemble size for summary = ', esize

    exclude = False
    if me.get_rank() == 0:
        if opts_dict['jsonfile']:
            inc_varlist = []
            # Read in the excluded or included var list
            ex_varlist, exclude = pyEnsLib.read_jsonlist(
                opts_dict['jsonfile'], 'ES')
            if exclude == False:
                inc_varlist = ex_varlist
                ex_varlist = []
            # Read in the included var list
            #inc_varlist=pyEnsLib.read_jsonlist(opts_dict['jsonfile'],'ES')

    # Broadcast the excluded var list to each processor
    #if opts_dict['mpi_enable']:
    #   ex_varlist=me.partition(ex_varlist,func=Duplicate(),involved=True)
    # Broadcast the excluded var list to each processor
    if opts_dict['mpi_enable']:
        exclude = me.partition(exclude, func=Duplicate(), involved=True)
        if exclude:
            ex_varlist = me.partition(ex_varlist,
                                      func=Duplicate(),
                                      involved=True)
        else:
            inc_varlist = me.partition(inc_varlist,
                                       func=Duplicate(),
                                       involved=True)

    in_files = []
    if (os.path.exists(input_dir)):
        # Get the list of files
        in_files_temp = os.listdir(input_dir)
        in_files = sorted(in_files_temp)

        # Make sure we have enough
        num_files = len(in_files)
        if me.get_rank() == 0 and (verbose == True):
            print 'Number of files in input directory = ', num_files
        if (num_files < esize):
            if me.get_rank() == 0 and (verbose == True):
                print 'Number of files in input directory (',num_files,\
                 ') is less than specified ensemble size of ', esize
            sys.exit(2)
        if (num_files > esize):
            if me.get_rank() == 0 and (verbose == True):
                print 'NOTE: Number of files in ', input_dir, \
                 'is greater than specified ensemble size of ', esize ,\
                 '\nwill just use the first ',  esize, 'files'
    else:
        if me.get_rank() == 0:
            print 'Input directory: ', input_dir, ' not found'
        sys.exit(2)

    if opts_dict['cumul']:
        if opts_dict['regx']:
            in_files_list = get_cumul_filelist(opts_dict, opts_dict['indir'],
                                               opts_dict['regx'])
        in_files = me.partition(in_files_list,
                                func=EqualLength(),
                                involved=True)
        if me.get_rank() == 0 and (verbose == True):
            print 'in_files=', in_files

    # Open the files in the input directory
    o_files = []
    if me.get_rank() == 0 and opts_dict['verbose']:
        print 'Input files are: '
        print "\n".join(in_files)
        #for i in in_files:
        #    print "in_files =",i
    for onefile in in_files[0:esize]:
        if (os.path.isfile(input_dir + '/' + onefile)):
            o_files.append(Nio.open_file(input_dir + '/' + onefile, "r"))
        else:
            if me.get_rank() == 0:
                print "COULD NOT LOCATE FILE " + input_dir + onefile + "! EXITING...."
            sys.exit()

    # Store dimensions of the input fields
    if me.get_rank() == 0 and (verbose == True):
        print "Getting spatial dimensions"
    nlev = -1
    nilev = -1
    ncol = -1
    nlat = -1
    nlon = -1
    lonkey = ''
    latkey = ''
    # Look at first file and get dims
    input_dims = o_files[0].dimensions
    ndims = len(input_dims)

    for key in input_dims:
        if key == "lev":
            nlev = input_dims["lev"]
        elif key == "ilev":
            nilev = input_dims["ilev"]
        elif key == "ncol":
            ncol = input_dims["ncol"]
        elif (key == "nlon") or (key == "lon"):
            nlon = input_dims[key]
            lonkey = key
        elif (key == "nlat") or (key == "lat"):
            nlat = input_dims[key]
            latkey = key

    if (nlev == -1):
        if me.get_rank() == 0:
            print "COULD NOT LOCATE valid dimension lev => EXITING...."
        sys.exit()

    if ((ncol == -1) and ((nlat == -1) or (nlon == -1))):
        if me.get_rank() == 0:
            print "Need either lat/lon or ncol  => EXITING...."
        sys.exit()

    # Check if this is SE or FV data
    if (ncol != -1):
        is_SE = True
    else:
        is_SE = False

    # Make sure all files have the same dimensions
    if me.get_rank() == 0 and (verbose == True):
        print "Checking dimensions across files...."
        print 'lev = ', nlev
        if (is_SE == True):
            print 'ncol = ', ncol
        else:
            print 'nlat = ', nlat
            print 'nlon = ', nlon

    for count, this_file in enumerate(o_files):
        input_dims = this_file.dimensions
        if (is_SE == True):
            if (nlev != int(input_dims["lev"])
                    or (ncol != int(input_dims["ncol"]))):
                if me.get_rank() == 0:
                    print "Dimension mismatch between ", in_files[
                        0], 'and', in_files[0], '!!!'
                sys.exit()
        else:
            if ( nlev != int(input_dims["lev"]) or ( nlat != int(input_dims[latkey]))\
                  or ( nlon != int(input_dims[lonkey]))):
                if me.get_rank() == 0:
                    print "Dimension mismatch between ", in_files[
                        0], 'and', in_files[0], '!!!'
                sys.exit()

    # Get 2d vars, 3d vars and all vars (For now include all variables)
    vars_dict_all = o_files[0].variables
    # Remove the excluded variables (specified in json file) from variable dictionary
    #print len(vars_dict_all)
    if exclude:
        vars_dict = vars_dict_all
        for i in ex_varlist:
            if i in vars_dict:
                del vars_dict[i]
    #Given an included var list, remove all float var that are not on the list
    else:
        vars_dict = vars_dict_all.copy()
        for k, v in vars_dict_all.iteritems():
            if (k not in inc_varlist) and (vars_dict_all[k].typecode() == 'f'):
                #print vars_dict_all[k].typecode()
                #print k
                del vars_dict[k]

    num_vars = len(vars_dict)
    #print num_vars
    #if me.get_rank() == 0:
    #   for k,v in vars_dict.iteritems():
    #       print 'vars_dict',k,vars_dict[k].typecode()

    str_size = 0

    d2_var_names = []
    d3_var_names = []
    num_2d = 0
    num_3d = 0

    # Which are 2d, which are 3d and max str_size
    for k, v in vars_dict.iteritems():
        var = k
        vd = v.dimensions  # all the variable's dimensions (names)
        vr = v.rank  # num dimension
        vs = v.shape  # dim values
        is_2d = False
        is_3d = False
        if (is_SE == True):  # (time, lev, ncol) or (time, ncol)
            if ((vr == 2) and (vs[1] == ncol)):
                is_2d = True
                num_2d += 1
            elif ((vr == 3) and (vs[2] == ncol and vs[1] == nlev)):
                is_3d = True
                num_3d += 1
        else:  # (time, lev, nlon, nlon) or (time, nlat, nlon)
            if ((vr == 3) and (vs[1] == nlat and vs[2] == nlon)):
                is_2d = True
                num_2d += 1
            elif ((vr == 4) and (vs[2] == nlat and vs[3] == nlon and
                                 (vs[1] == nlev or vs[1] == nilev))):
                is_3d = True
                num_3d += 1

        if (is_3d == True):
            str_size = max(str_size, len(k))
            d3_var_names.append(k)
        elif (is_2d == True):
            str_size = max(str_size, len(k))
            d2_var_names.append(k)
        #else:
        #    print 'var=',k

    if me.get_rank() == 0 and (verbose == True):
        print 'Number of variables found:  ', num_3d + num_2d
        print '3D variables: ' + str(num_3d) + ', 2D variables: ' + str(num_2d)

    # Now sort these and combine (this sorts caps first, then lower case -
    # which is what we want)
    d2_var_names.sort()
    d3_var_names.sort()

    if esize < num_2d + num_3d:
        if me.get_rank() == 0:
            print "************************************************************************************************************************************"
            print "  Error: the total number of 3D and 2D variables " + str(
                num_2d + num_3d
            ) + " is larger than the number of ensemble files " + str(esize)
            print "  Cannot generate ensemble summary file, please remove more variables from your included variable list,"
            print "  or add more varaibles in your excluded variable list!!!"
            print "************************************************************************************************************************************"
        sys.exit()
    # All vars is 3d vars first (sorted), the 2d vars
    all_var_names = list(d3_var_names)
    all_var_names += d2_var_names
    n_all_var_names = len(all_var_names)

    #if me.get_rank() == 0 and (verbose == True):
    #    print 'num vars = ', n_all_var_names, '(3d = ', num_3d, ' and 2d = ', num_2d, ")"

    # Create new summary ensemble file
    this_sumfile = opts_dict["sumfile"]

    if me.get_rank() == 0 and (verbose == True):
        print "Creating ", this_sumfile, "  ..."
    if (me.get_rank() == 0 | opts_dict["popens"]):
        if os.path.exists(this_sumfile):
            os.unlink(this_sumfile)

        opt = Nio.options()
        opt.PreFill = False
        opt.Format = 'NetCDF4Classic'
        nc_sumfile = Nio.open_file(this_sumfile, 'w', options=opt)

        # Set dimensions
        if me.get_rank() == 0 and (verbose == True):
            print "Setting dimensions ....."
        if (is_SE == True):
            nc_sumfile.create_dimension('ncol', ncol)
        else:
            nc_sumfile.create_dimension('nlat', nlat)
            nc_sumfile.create_dimension('nlon', nlon)
        nc_sumfile.create_dimension('nlev', nlev)
        nc_sumfile.create_dimension('ens_size', esize)
        nc_sumfile.create_dimension('nvars', num_3d + num_2d)
        nc_sumfile.create_dimension('nvars3d', num_3d)
        nc_sumfile.create_dimension('nvars2d', num_2d)
        nc_sumfile.create_dimension('str_size', str_size)

        # Set global attributes
        now = time.strftime("%c")
        if me.get_rank() == 0 and (verbose == True):
            print "Setting global attributes ....."
        setattr(nc_sumfile, 'creation_date', now)
        setattr(nc_sumfile, 'title', 'CAM verification ensemble summary file')
        setattr(nc_sumfile, 'tag', opts_dict["tag"])
        setattr(nc_sumfile, 'compset', opts_dict["compset"])
        setattr(nc_sumfile, 'resolution', opts_dict["res"])
        setattr(nc_sumfile, 'machine', opts_dict["mach"])

        # Create variables
        if me.get_rank() == 0 and (verbose == True):
            print "Creating variables ....."
        v_lev = nc_sumfile.create_variable("lev", 'f', ('nlev', ))
        v_vars = nc_sumfile.create_variable("vars", 'S1',
                                            ('nvars', 'str_size'))
        v_var3d = nc_sumfile.create_variable("var3d", 'S1',
                                             ('nvars3d', 'str_size'))
        v_var2d = nc_sumfile.create_variable("var2d", 'S1',
                                             ('nvars2d', 'str_size'))
        if not opts_dict['gmonly']:
            if (is_SE == True):
                v_ens_avg3d = nc_sumfile.create_variable(
                    "ens_avg3d", 'f', ('nvars3d', 'nlev', 'ncol'))
                v_ens_stddev3d = nc_sumfile.create_variable(
                    "ens_stddev3d", 'f', ('nvars3d', 'nlev', 'ncol'))
                v_ens_avg2d = nc_sumfile.create_variable(
                    "ens_avg2d", 'f', ('nvars2d', 'ncol'))
                v_ens_stddev2d = nc_sumfile.create_variable(
                    "ens_stddev2d", 'f', ('nvars2d', 'ncol'))
            else:
                v_ens_avg3d = nc_sumfile.create_variable(
                    "ens_avg3d", 'f', ('nvars3d', 'nlev', 'nlat', 'nlon'))
                v_ens_stddev3d = nc_sumfile.create_variable(
                    "ens_stddev3d", 'f', ('nvars3d', 'nlev', 'nlat', 'nlon'))
                v_ens_avg2d = nc_sumfile.create_variable(
                    "ens_avg2d", 'f', ('nvars2d', 'nlat', 'nlon'))
                v_ens_stddev2d = nc_sumfile.create_variable(
                    "ens_stddev2d", 'f', ('nvars2d', 'nlat', 'nlon'))

            v_RMSZ = nc_sumfile.create_variable("RMSZ", 'f',
                                                ('nvars', 'ens_size'))
        v_gm = nc_sumfile.create_variable("global_mean", 'f',
                                          ('nvars', 'ens_size'))
        v_standardized_gm = nc_sumfile.create_variable("standardized_gm", 'f',
                                                       ('nvars', 'ens_size'))
        v_loadings_gm = nc_sumfile.create_variable('loadings_gm', 'f',
                                                   ('nvars', 'nvars'))
        v_mu_gm = nc_sumfile.create_variable('mu_gm', 'f', ('nvars', ))
        v_sigma_gm = nc_sumfile.create_variable('sigma_gm', 'f', ('nvars', ))
        v_sigma_scores_gm = nc_sumfile.create_variable('sigma_scores_gm', 'f',
                                                       ('nvars', ))

        # Assign vars, var3d and var2d
        if me.get_rank() == 0 and (verbose == True):
            print "Assigning vars, var3d, and var2d ....."

        eq_all_var_names = []
        eq_d3_var_names = []
        eq_d2_var_names = []

        l_eq = len(all_var_names)
        for i in range(l_eq):
            tt = list(all_var_names[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ') * (str_size - l_tt)
                tt.extend(extra)
            eq_all_var_names.append(tt)

        l_eq = len(d3_var_names)
        for i in range(l_eq):
            tt = list(d3_var_names[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ') * (str_size - l_tt)
                tt.extend(extra)
            eq_d3_var_names.append(tt)

        l_eq = len(d2_var_names)
        for i in range(l_eq):
            tt = list(d2_var_names[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ') * (str_size - l_tt)
                tt.extend(extra)
            eq_d2_var_names.append(tt)

        v_vars[:] = eq_all_var_names[:]
        v_var3d[:] = eq_d3_var_names[:]
        v_var2d[:] = eq_d2_var_names[:]

        # Time-invarient metadata
        if me.get_rank() == 0 and (verbose == True):
            print "Assigning time invariant metadata ....."
        lev_data = vars_dict["lev"]
        v_lev = lev_data

    # Form ensembles, each missing one member; compute RMSZs and global means
    #for each variable, we also do max norm also (currently done in pyStats)
    tslice = opts_dict['tslice']

    if not opts_dict['cumul']:
        # Partition the var list

        var3_list_loc = me.partition(d3_var_names,
                                     func=EqualStride(),
                                     involved=True)
        var2_list_loc = me.partition(d2_var_names,
                                     func=EqualStride(),
                                     involved=True)
    else:
        var3_list_loc = d3_var_names
        var2_list_loc = d2_var_names

    # Calculate global means #
    if me.get_rank() == 0 and (verbose == True):
        print "Calculating global means ....."
    if not opts_dict['cumul']:
        gm3d, gm2d, var_list = pyEnsLib.generate_global_mean_for_summary(
            o_files, var3_list_loc, var2_list_loc, is_SE, False, opts_dict)
    if me.get_rank() == 0 and (verbose == True):
        print "Finish calculating global means ....."

    # Calculate RMSZ scores
    if (not opts_dict['gmonly']) | (opts_dict['cumul']):
        if me.get_rank() == 0 and (verbose == True):
            print "Calculating RMSZ scores ....."
        zscore3d, zscore2d, ens_avg3d, ens_stddev3d, ens_avg2d, ens_stddev2d, temp1, temp2 = pyEnsLib.calc_rmsz(
            o_files, var3_list_loc, var2_list_loc, is_SE, opts_dict)

    # Calculate max norm ensemble
    if opts_dict['maxnorm']:
        if me.get_rank() == 0 and (verbose == True):
            print "Calculating max norm of ensembles ....."
        pyEnsLib.calculate_maxnormens(opts_dict, var3_list_loc)
        pyEnsLib.calculate_maxnormens(opts_dict, var2_list_loc)

    if opts_dict['mpi_enable'] & (not opts_dict['popens']):

        if not opts_dict['cumul']:
            # Gather the 3d variable results from all processors to the master processor
            slice_index = get_stride_list(len(d3_var_names), me)

            # Gather global means 3d results
            gm3d = gather_npArray(gm3d, me, slice_index,
                                  (len(d3_var_names), len(o_files)))
            if not opts_dict['gmonly']:
                # Gather zscore3d results
                zscore3d = gather_npArray(zscore3d, me, slice_index,
                                          (len(d3_var_names), len(o_files)))

                # Gather ens_avg3d and ens_stddev3d results
                shape_tuple3d = get_shape(ens_avg3d.shape, len(d3_var_names),
                                          me.get_rank())
                ens_avg3d = gather_npArray(ens_avg3d, me, slice_index,
                                           shape_tuple3d)
                ens_stddev3d = gather_npArray(ens_stddev3d, me, slice_index,
                                              shape_tuple3d)

            # Gather 2d variable results from all processors to the master processor
            slice_index = get_stride_list(len(d2_var_names), me)

            # Gather global means 2d results
            gm2d = gather_npArray(gm2d, me, slice_index,
                                  (len(d2_var_names), len(o_files)))

            var_list = gather_list(var_list, me)

            if not opts_dict['gmonly']:
                # Gather zscore2d results
                zscore2d = gather_npArray(zscore2d, me, slice_index,
                                          (len(d2_var_names), len(o_files)))

                # Gather ens_avg3d and ens_stddev2d results
                shape_tuple2d = get_shape(ens_avg2d.shape, len(d2_var_names),
                                          me.get_rank())
                ens_avg2d = gather_npArray(ens_avg2d, me, slice_index,
                                           shape_tuple2d)
                ens_stddev2d = gather_npArray(ens_stddev2d, me, slice_index,
                                              shape_tuple2d)

        else:
            gmall = np.concatenate((temp1, temp2), axis=0)
            gmall = pyEnsLib.gather_npArray_pop(
                gmall, me,
                (me.get_size(), len(d3_var_names) + len(d2_var_names)))
    # Assign to file:
    if me.get_rank() == 0 | opts_dict['popens']:
        if not opts_dict['cumul']:
            gmall = np.concatenate((gm3d, gm2d), axis=0)
            if not opts_dict['gmonly']:
                Zscoreall = np.concatenate((zscore3d, zscore2d), axis=0)
                v_RMSZ[:, :] = Zscoreall[:, :]
            if not opts_dict['gmonly']:
                if (is_SE == True):
                    v_ens_avg3d[:, :, :] = ens_avg3d[:, :, :]
                    v_ens_stddev3d[:, :, :] = ens_stddev3d[:, :, :]
                    v_ens_avg2d[:, :] = ens_avg2d[:, :]
                    v_ens_stddev2d[:, :] = ens_stddev2d[:, :]
                else:
                    v_ens_avg3d[:, :, :, :] = ens_avg3d[:, :, :, :]
                    v_ens_stddev3d[:, :, :, :] = ens_stddev3d[:, :, :, :]
                    v_ens_avg2d[:, :, :] = ens_avg2d[:, :, :]
                    v_ens_stddev2d[:, :, :] = ens_stddev2d[:, :, :]
        else:
            gmall_temp = np.transpose(gmall[:, :])
            gmall = gmall_temp
        mu_gm, sigma_gm, standardized_global_mean, loadings_gm, scores_gm = pyEnsLib.pre_PCA(
            gmall, all_var_names, var_list, me)
        v_gm[:, :] = gmall[:, :]
        v_standardized_gm[:, :] = standardized_global_mean[:, :]
        v_mu_gm[:] = mu_gm[:]
        v_sigma_gm[:] = sigma_gm[:].astype(np.float32)
        v_loadings_gm[:, :] = loadings_gm[:, :]
        v_sigma_scores_gm[:] = scores_gm[:]

        if me.get_rank() == 0:
            print "All Done"
Beispiel #3
0
def main(argv):


    # Get command line stuff and store in a dictionary
    s = 'tag= compset= esize= tslice= res= sumfile= indir= sumfiledir= mach= verbose jsonfile= mpi_enable maxnorm gmonly popens cumul regx= startMon= endMon= fIndex='
    optkeys = s.split()
    try: 
        opts, args = getopt.getopt(argv, "h", optkeys)
    except getopt.GetoptError:
        pyEnsLib.EnsSum_usage()
        sys.exit(2)

    # Put command line options in a dictionary - also set defaults
    opts_dict={}
    
    # Defaults
    opts_dict['tag'] = 'cesm2_0_beta08'
    opts_dict['compset'] = 'F2000'
    opts_dict['mach'] = 'cheyenne'
    opts_dict['esize'] = 350
    opts_dict['tslice'] = 1
    opts_dict['res'] = 'f19_f19'
    opts_dict['sumfile'] = 'ens.summary.nc'
    opts_dict['indir'] = './'
    opts_dict['sumfiledir'] = './'
    opts_dict['jsonfile'] = 'exclude_empty.json'
    opts_dict['verbose'] = False
    opts_dict['mpi_enable'] = False
    opts_dict['maxnorm'] = False
    opts_dict['gmonly'] = True
    opts_dict['popens'] = False
    opts_dict['cumul'] = False
    opts_dict['regx'] = 'test'
    opts_dict['startMon'] = 1
    opts_dict['endMon'] = 1
    opts_dict['fIndex'] = 151

    # This creates the dictionary of input arguments 
    opts_dict = pyEnsLib.getopt_parseconfig(opts,optkeys,'ES',opts_dict)

    verbose = opts_dict['verbose']

    st = opts_dict['esize']
    esize = int(st)


    if not (opts_dict['tag'] and opts_dict['compset'] and opts_dict['mach'] or opts_dict['res']):
       print 'Please specify --tag, --compset, --mach and --res options'
       sys.exit()
       
    # Now find file names in indir
    input_dir = opts_dict['indir']
    # The var list that will be excluded
    ex_varlist=[]
    inc_varlist=[]

    # Create a mpi simplecomm object
    if opts_dict['mpi_enable']:
        me=simplecomm.create_comm()
    else:
        me=simplecomm.create_comm(not opts_dict['mpi_enable'])
    
    if me.get_rank() == 0:
       print 'Running pyEnsSum!'

    if me.get_rank() ==0 and (verbose == True):
        print opts_dict
        print 'Ensemble size for summary = ', esize

    exclude=False
    if me.get_rank() == 0:
        if opts_dict['jsonfile']:
            inc_varlist=[]
            # Read in the excluded or included var list
            ex_varlist,exclude=pyEnsLib.read_jsonlist(opts_dict['jsonfile'],'ES')
            if exclude == False:
               inc_varlist=ex_varlist
               ex_varlist=[]
            # Read in the included var list
            #inc_varlist=pyEnsLib.read_jsonlist(opts_dict['jsonfile'],'ES')

    # Broadcast the excluded var list to each processor
    #if opts_dict['mpi_enable']:
    #   ex_varlist=me.partition(ex_varlist,func=Duplicate(),involved=True)
    # Broadcast the excluded var list to each processor
    if opts_dict['mpi_enable']:
        exclude=me.partition(exclude,func=Duplicate(),involved=True)
        if exclude:
           ex_varlist=me.partition(ex_varlist,func=Duplicate(),involved=True)
        else:
           inc_varlist=me.partition(inc_varlist,func=Duplicate(),involved=True)
        
    in_files=[]
    if(os.path.exists(input_dir)):
        # Get the list of files
        in_files_temp = os.listdir(input_dir)
        in_files=sorted(in_files_temp)

        # Make sure we have enough
        num_files = len(in_files)
        if me.get_rank()==0 and (verbose == True):
            print 'Number of files in input directory = ', num_files
        if (num_files < esize):
            if me.get_rank()==0 and (verbose == True):
               print 'Number of files in input directory (',num_files,\
                ') is less than specified ensemble size of ', esize
            sys.exit(2)
        if (num_files > esize):
            if me.get_rank()==0 and (verbose == True):
               print 'NOTE: Number of files in ', input_dir, \
                'is greater than specified ensemble size of ', esize ,\
                '\nwill just use the first ',  esize, 'files'
    else:
        if me.get_rank()==0:
           print 'Input directory: ',input_dir,' not found'
        sys.exit(2)

    if opts_dict['cumul']:
        if opts_dict['regx']:
           in_files_list=get_cumul_filelist(opts_dict,opts_dict['indir'],opts_dict['regx'])
        in_files=me.partition(in_files_list,func=EqualLength(),involved=True)
        if me.get_rank()==0 and (verbose == True):
           print 'in_files=',in_files

    # Open the files in the input directory
    o_files=[]
    if me.get_rank() == 0 and opts_dict['verbose']:
       print 'Input files are: '
       print "\n".join(in_files)
       #for i in in_files:
       #    print "in_files =",i
    for onefile in in_files[0:esize]:
        if (os.path.isfile(input_dir+'/' + onefile)):
            o_files.append(Nio.open_file(input_dir+'/' + onefile,"r"))
        else:
            if me.get_rank()==0:
               print "COULD NOT LOCATE FILE "+ input_dir + onefile + "! EXITING...."
            sys.exit() 

    # Store dimensions of the input fields
    if me.get_rank()==0 and (verbose == True):
        print "Getting spatial dimensions"
    nlev = -1
    nilev = -1
    ncol = -1
    nlat = -1
    nlon = -1
    lonkey=''
    latkey=''
    # Look at first file and get dims
    input_dims = o_files[0].dimensions
    ndims = len(input_dims)

    for key in input_dims:
        if key == "lev":
            nlev = input_dims["lev"]
        elif key == "ilev":
            nilev = input_dims["ilev"]
        elif key == "ncol":
            ncol = input_dims["ncol"]
        elif (key == "nlon") or (key =="lon"):
            nlon = input_dims[key]
            lonkey=key
        elif (key == "nlat") or (key == "lat"):
            nlat = input_dims[key]
            latkey=key
        
    if (nlev == -1) : 
        if me.get_rank()==0: 
           print "COULD NOT LOCATE valid dimension lev => EXITING...."
        sys.exit() 

    if (( ncol == -1) and ((nlat == -1) or (nlon == -1))):
        if me.get_rank()==0: 
           print "Need either lat/lon or ncol  => EXITING...."
        sys.exit()            

    # Check if this is SE or FV data
    if (ncol != -1):
        is_SE = True 
    else:
        is_SE = False    

    # Make sure all files have the same dimensions
    if me.get_rank()==0 and (verbose == True):
        print "Checking dimensions across files...."
        print 'lev = ', nlev
        if (is_SE == True):
            print 'ncol = ', ncol
        else:
            print 'nlat = ', nlat
            print 'nlon = ', nlon

    for count, this_file in enumerate(o_files):
        input_dims = this_file.dimensions     
        if (is_SE == True):
            if ( nlev != int(input_dims["lev"]) or ( ncol != int(input_dims["ncol"]))):
                if me.get_rank() == 0:
                   print "Dimension mismatch between ", in_files[0], 'and', in_files[0], '!!!'
                sys.exit() 
        else:
            if ( nlev != int(input_dims["lev"]) or ( nlat != int(input_dims[latkey]))\
                  or ( nlon != int(input_dims[lonkey]))): 
                if me.get_rank() == 0:
                   print "Dimension mismatch between ", in_files[0], 'and', in_files[0], '!!!'
                sys.exit() 

    # Get 2d vars, 3d vars and all vars (For now include all variables) 
    vars_dict_all = o_files[0].variables
    # Remove the excluded variables (specified in json file) from variable dictionary
    #print len(vars_dict_all)
    if exclude:
        vars_dict=vars_dict_all
        for i in ex_varlist:
          if i in vars_dict:
            del vars_dict[i]
    #Given an included var list, remove all float var that are not on the list
    else:
        vars_dict=vars_dict_all.copy()
        for k,v in vars_dict_all.iteritems():
           if (k not in inc_varlist) and (vars_dict_all[k].typecode()=='f'):
            #print vars_dict_all[k].typecode()
            #print k
            del vars_dict[k]
 
    num_vars = len(vars_dict)
    #print num_vars
    #if me.get_rank() == 0:
    #   for k,v in vars_dict.iteritems():
    #       print 'vars_dict',k,vars_dict[k].typecode()

    str_size = 0

    d2_var_names = []
    d3_var_names = []
    num_2d = 0
    num_3d = 0

    # Which are 2d, which are 3d and max str_size 
    for k,v in vars_dict.iteritems():  
        var = k
        vd = v.dimensions # all the variable's dimensions (names)
        vr = v.rank # num dimension
        vs = v.shape # dim values
        is_2d = False
        is_3d = False
        if (is_SE == True): # (time, lev, ncol) or (time, ncol)
            if ((vr == 2) and (vs[1] == ncol)):  
                is_2d = True 
                num_2d += 1
            elif ((vr == 3) and (vs[2] == ncol and vs[1] == nlev )):  
                is_3d = True 
                num_3d += 1
        else: # (time, lev, nlon, nlon) or (time, nlat, nlon)
            if ((vr == 3) and (vs[1] == nlat and vs[2] == nlon)):  
                is_2d = True 
                num_2d += 1
            elif ((vr == 4) and (vs[2] == nlat and vs[3] == nlon and (vs[1] == nlev or vs[1]==nilev ))):  
                is_3d = True 
                num_3d += 1
                    
        if (is_3d == True) :
            str_size = max(str_size, len(k))
            d3_var_names.append(k)
        elif  (is_2d == True):    
            str_size = max(str_size, len(k))
            d2_var_names.append(k)
        #else:
        #    print 'var=',k

    if me.get_rank() == 0 and (verbose == True):
        print 'Number of variables found:  ', num_3d+num_2d
        print '3D variables: '+str(num_3d)+', 2D variables: '+str(num_2d)

    # Now sort these and combine (this sorts caps first, then lower case - 
    # which is what we want)
    d2_var_names.sort()       
    d3_var_names.sort()

    if esize<num_2d+num_3d:
       if me.get_rank()==0:
          print "************************************************************************************************************************************"
          print "  Error: the total number of 3D and 2D variables "+str(num_2d+num_3d)+" is larger than the number of ensemble files "+str(esize)
          print "  Cannot generate ensemble summary file, please remove more variables from your included variable list,"
          print "  or add more varaibles in your excluded variable list!!!"
          print "************************************************************************************************************************************"
       sys.exit()
    # All vars is 3d vars first (sorted), the 2d vars
    all_var_names = list(d3_var_names)
    all_var_names += d2_var_names
    n_all_var_names = len(all_var_names)

    #if me.get_rank() == 0 and (verbose == True):
    #    print 'num vars = ', n_all_var_names, '(3d = ', num_3d, ' and 2d = ', num_2d, ")"

    # Create new summary ensemble file
    this_sumfile = opts_dict["sumfile"]

    if me.get_rank() == 0 and (verbose == True):
        print "Creating ", this_sumfile, "  ..."
    if(me.get_rank() ==0 | opts_dict["popens"]):
        if os.path.exists(this_sumfile):
            os.unlink(this_sumfile)

        opt = Nio.options()
        opt.PreFill = False
        opt.Format = 'NetCDF4Classic'
        nc_sumfile = Nio.open_file(this_sumfile, 'w', options=opt)

        # Set dimensions
        if me.get_rank() == 0 and (verbose == True):
            print "Setting dimensions ....."
        if (is_SE == True):
            nc_sumfile.create_dimension('ncol', ncol)
        else:
            nc_sumfile.create_dimension('nlat', nlat)
            nc_sumfile.create_dimension('nlon', nlon)
        nc_sumfile.create_dimension('nlev', nlev)
        nc_sumfile.create_dimension('ens_size', esize)
        nc_sumfile.create_dimension('nvars', num_3d + num_2d)
        nc_sumfile.create_dimension('nvars3d', num_3d)
        nc_sumfile.create_dimension('nvars2d', num_2d)
        nc_sumfile.create_dimension('str_size', str_size)

        # Set global attributes
        now = time.strftime("%c")
        if me.get_rank() == 0 and (verbose == True):
            print "Setting global attributes ....."
        setattr(nc_sumfile, 'creation_date',now)
        setattr(nc_sumfile, 'title', 'CAM verification ensemble summary file')
        setattr(nc_sumfile, 'tag', opts_dict["tag"]) 
        setattr(nc_sumfile, 'compset', opts_dict["compset"]) 
        setattr(nc_sumfile, 'resolution', opts_dict["res"]) 
        setattr(nc_sumfile, 'machine', opts_dict["mach"]) 

        # Create variables
        if me.get_rank() == 0 and (verbose == True):
            print "Creating variables ....."
        v_lev = nc_sumfile.create_variable("lev", 'f', ('nlev',))
        v_vars = nc_sumfile.create_variable("vars", 'S1', ('nvars', 'str_size'))
        v_var3d = nc_sumfile.create_variable("var3d", 'S1', ('nvars3d', 'str_size'))
        v_var2d = nc_sumfile.create_variable("var2d", 'S1', ('nvars2d', 'str_size'))
        if not opts_dict['gmonly']:
            if (is_SE == True):
                v_ens_avg3d = nc_sumfile.create_variable("ens_avg3d", 'f', ('nvars3d', 'nlev', 'ncol'))
                v_ens_stddev3d = nc_sumfile.create_variable("ens_stddev3d", 'f', ('nvars3d', 'nlev', 'ncol'))
                v_ens_avg2d = nc_sumfile.create_variable("ens_avg2d", 'f', ('nvars2d', 'ncol'))
                v_ens_stddev2d = nc_sumfile.create_variable("ens_stddev2d", 'f', ('nvars2d', 'ncol'))
            else:
                v_ens_avg3d = nc_sumfile.create_variable("ens_avg3d", 'f', ('nvars3d', 'nlev', 'nlat', 'nlon'))
                v_ens_stddev3d = nc_sumfile.create_variable("ens_stddev3d", 'f', ('nvars3d', 'nlev', 'nlat', 'nlon'))
                v_ens_avg2d = nc_sumfile.create_variable("ens_avg2d", 'f', ('nvars2d', 'nlat', 'nlon'))
                v_ens_stddev2d = nc_sumfile.create_variable("ens_stddev2d", 'f', ('nvars2d', 'nlat', 'nlon'))

            v_RMSZ = nc_sumfile.create_variable("RMSZ", 'f', ('nvars', 'ens_size'))
        v_gm = nc_sumfile.create_variable("global_mean", 'f', ('nvars', 'ens_size'))
        v_standardized_gm=nc_sumfile.create_variable("standardized_gm",'f',('nvars','ens_size'))
        v_loadings_gm = nc_sumfile.create_variable('loadings_gm','f',('nvars','nvars'))
        v_mu_gm = nc_sumfile.create_variable('mu_gm','f',('nvars',))
        v_sigma_gm = nc_sumfile.create_variable('sigma_gm','f',('nvars',))
        v_sigma_scores_gm = nc_sumfile.create_variable('sigma_scores_gm','f',('nvars',))


        # Assign vars, var3d and var2d
        if me.get_rank() == 0 and (verbose == True):
            print "Assigning vars, var3d, and var2d ....."

        eq_all_var_names =[]
        eq_d3_var_names = []
        eq_d2_var_names = []

        l_eq = len(all_var_names)
        for i in range(l_eq):
            tt = list(all_var_names[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ')*(str_size - l_tt)
                tt.extend(extra)
            eq_all_var_names.append(tt)

        l_eq = len(d3_var_names)
        for i in range(l_eq):
            tt = list(d3_var_names[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ')*(str_size - l_tt)
                tt.extend(extra)
            eq_d3_var_names.append(tt)

        l_eq = len(d2_var_names)
        for i in range(l_eq):
            tt = list(d2_var_names[i])
            l_tt = len(tt)
            if (l_tt < str_size):
                extra = list(' ')*(str_size - l_tt)
                tt.extend(extra)
            eq_d2_var_names.append(tt)

        v_vars[:] = eq_all_var_names[:]
        v_var3d[:] = eq_d3_var_names[:]
        v_var2d[:] = eq_d2_var_names[:]

        # Time-invarient metadata
        if me.get_rank() == 0 and (verbose == True):
            print "Assigning time invariant metadata ....."
        lev_data = vars_dict["lev"]
        v_lev = lev_data

    # Form ensembles, each missing one member; compute RMSZs and global means
    #for each variable, we also do max norm also (currently done in pyStats)
    tslice = opts_dict['tslice']

    if not opts_dict['cumul']:
        # Partition the var list
        
        var3_list_loc=me.partition(d3_var_names,func=EqualStride(),involved=True)
        var2_list_loc=me.partition(d2_var_names,func=EqualStride(),involved=True)
    else:
        var3_list_loc=d3_var_names
        var2_list_loc=d2_var_names

    # Calculate global means #
    if me.get_rank() == 0 and (verbose == True):
        print "Calculating global means ....."
    if not opts_dict['cumul']:
        gm3d,gm2d,var_list = pyEnsLib.generate_global_mean_for_summary(o_files,var3_list_loc,var2_list_loc , is_SE, False,opts_dict)
    if me.get_rank() == 0 and (verbose == True):
        print "Finish calculating global means ....."

    # Calculate RMSZ scores  
    if (not opts_dict['gmonly']) | (opts_dict['cumul']):
        if me.get_rank() == 0 and (verbose == True):
            print "Calculating RMSZ scores ....."
        zscore3d,zscore2d,ens_avg3d,ens_stddev3d,ens_avg2d,ens_stddev2d,temp1,temp2=pyEnsLib.calc_rmsz(o_files,var3_list_loc,var2_list_loc,is_SE,opts_dict)    

    # Calculate max norm ensemble
    if opts_dict['maxnorm']:
        if me.get_rank() == 0 and (verbose == True):
            print "Calculating max norm of ensembles ....."
        pyEnsLib.calculate_maxnormens(opts_dict,var3_list_loc)
        pyEnsLib.calculate_maxnormens(opts_dict,var2_list_loc)

    if opts_dict['mpi_enable'] & ( not opts_dict['popens']):

        if not opts_dict['cumul']:
            # Gather the 3d variable results from all processors to the master processor
            slice_index=get_stride_list(len(d3_var_names),me)
         
            # Gather global means 3d results
            gm3d=gather_npArray(gm3d,me,slice_index,(len(d3_var_names),len(o_files)))
            if not opts_dict['gmonly']:
                # Gather zscore3d results
                zscore3d=gather_npArray(zscore3d,me,slice_index,(len(d3_var_names),len(o_files)))

                # Gather ens_avg3d and ens_stddev3d results
                shape_tuple3d=get_shape(ens_avg3d.shape,len(d3_var_names),me.get_rank())
                ens_avg3d=gather_npArray(ens_avg3d,me,slice_index,shape_tuple3d) 
                ens_stddev3d=gather_npArray(ens_stddev3d,me,slice_index,shape_tuple3d) 

            # Gather 2d variable results from all processors to the master processor
            slice_index=get_stride_list(len(d2_var_names),me)

            # Gather global means 2d results
            gm2d=gather_npArray(gm2d,me,slice_index,(len(d2_var_names),len(o_files)))

            var_list=gather_list(var_list,me)

            if not opts_dict['gmonly']:
                # Gather zscore2d results
                zscore2d=gather_npArray(zscore2d,me,slice_index,(len(d2_var_names),len(o_files)))

                # Gather ens_avg3d and ens_stddev2d results
                shape_tuple2d=get_shape(ens_avg2d.shape,len(d2_var_names),me.get_rank())
                ens_avg2d=gather_npArray(ens_avg2d,me,slice_index,shape_tuple2d) 
                ens_stddev2d=gather_npArray(ens_stddev2d,me,slice_index,shape_tuple2d) 

        else:
            gmall=np.concatenate((temp1,temp2),axis=0)
            gmall=pyEnsLib.gather_npArray_pop(gmall,me,(me.get_size(),len(d3_var_names)+len(d2_var_names)))
    # Assign to file:
    if me.get_rank() == 0 | opts_dict['popens'] :
        if not opts_dict['cumul']:
            gmall=np.concatenate((gm3d,gm2d),axis=0)
            if not opts_dict['gmonly']:
                Zscoreall=np.concatenate((zscore3d,zscore2d),axis=0)
                v_RMSZ[:,:]=Zscoreall[:,:]
            if not opts_dict['gmonly']:
                if (is_SE == True):
                    v_ens_avg3d[:,:,:]=ens_avg3d[:,:,:]
                    v_ens_stddev3d[:,:,:]=ens_stddev3d[:,:,:]
                    v_ens_avg2d[:,:]=ens_avg2d[:,:]
                    v_ens_stddev2d[:,:]=ens_stddev2d[:,:]
                else:
                    v_ens_avg3d[:,:,:,:]=ens_avg3d[:,:,:,:]
                    v_ens_stddev3d[:,:,:,:]=ens_stddev3d[:,:,:,:]
                    v_ens_avg2d[:,:,:]=ens_avg2d[:,:,:]
                    v_ens_stddev2d[:,:,:]=ens_stddev2d[:,:,:]
        else:
            gmall_temp=np.transpose(gmall[:,:])
            gmall=gmall_temp
        mu_gm,sigma_gm,standardized_global_mean,loadings_gm,scores_gm=pyEnsLib.pre_PCA(gmall,all_var_names,var_list,me)
        v_gm[:,:]=gmall[:,:]
        v_standardized_gm[:,:]=standardized_global_mean[:,:]
        v_mu_gm[:]=mu_gm[:]
        v_sigma_gm[:]=sigma_gm[:].astype(np.float32)
        v_loadings_gm[:,:]=loadings_gm[:,:]
        v_sigma_scores_gm[:]=scores_gm[:]

        if me.get_rank() == 0:
           print "All Done"
Beispiel #4
0
def main(argv):

    print "Running pyEnsSum!"

    # Get command line stuff and store in a dictionary
    s = "tag= compset= esize= tslice= res= sumfile= indir= sumfiledir= mach= verbose jsonfile= mpi_enable maxnorm gmonly popens cumul regx= startMon= endMon= fIndex="
    optkeys = s.split()
    try:
        opts, args = getopt.getopt(argv, "h", optkeys)
    except getopt.GetoptError:
        pyEnsLib.EnsSum_usage()
        sys.exit(2)

    # Put command line options in a dictionary - also set defaults
    opts_dict = {}

    # Defaults
    opts_dict["tag"] = ""
    opts_dict["compset"] = ""
    opts_dict["mach"] = ""
    opts_dict["esize"] = 151
    opts_dict["tslice"] = 0
    opts_dict["res"] = ""
    opts_dict["sumfile"] = "ens.summary.nc"
    opts_dict["indir"] = "./"
    opts_dict["sumfiledir"] = "./"
    opts_dict["jsonfile"] = ""
    opts_dict["verbose"] = True
    opts_dict["mpi_enable"] = False
    opts_dict["maxnorm"] = False
    opts_dict["gmonly"] = False
    opts_dict["popens"] = False
    opts_dict["cumul"] = False
    opts_dict["regx"] = "test"
    opts_dict["startMon"] = 1
    opts_dict["endMon"] = 1
    opts_dict["fIndex"] = 151

    # This creates the dictionary of input arguments
    opts_dict = pyEnsLib.getopt_parseconfig(opts, optkeys, "ES", opts_dict)

    verbose = opts_dict["verbose"]

    st = opts_dict["esize"]
    esize = int(st)

    if verbose == True:
        print opts_dict
        print "Ensemble size for summary = ", esize

    if not (opts_dict["tag"] and opts_dict["compset"] and opts_dict["mach"] or opts_dict["res"]):
        print "Please specify --tag, --compset, --mach and --res options"
        sys.exit()

    # Now find file names in indir
    input_dir = opts_dict["indir"]
    # The var list that will be excluded
    ex_varlist = []

    # Create a mpi simplecomm object
    if opts_dict["mpi_enable"]:
        me = simplecomm.create_comm()
    else:
        me = simplecomm.create_comm(not opts_dict["mpi_enable"])

    if me.get_rank() == 0:
        if opts_dict["jsonfile"]:
            # Read in the excluded var list
            ex_varlist = pyEnsLib.read_jsonlist(opts_dict["jsonfile"], "ES")

        # Broadcast the excluded var list to each processor
    if opts_dict["mpi_enable"]:
        ex_varlist = me.partition(ex_varlist, func=Duplicate(), involved=True)

    in_files = []
    if os.path.exists(input_dir):
        # Get the list of files
        in_files_temp = os.listdir(input_dir)
        in_files = sorted(in_files_temp)
        # Make sure we have enough
        num_files = len(in_files)
        if verbose == True:
            print "Number of files in input directory = ", num_files
        if num_files < esize:
            print "Number of files in input directory (", num_files, ") is less than specified ensemble size of ", esize
            sys.exit(2)
        if num_files > esize:
            print "NOTE: Number of files in ", input_dir, "is greater than specified ensemble size of ", esize, "\nwill just use the first ", esize, "files"
    else:
        print "Input directory: ", input_dir, " not found"
        sys.exit(2)

    if opts_dict["cumul"]:
        if opts_dict["regx"]:
            in_files_list = get_cumul_filelist(opts_dict, opts_dict["indir"], opts_dict["regx"])
        in_files = me.partition(in_files_list, func=EqualLength(), involved=True)
        if me.get_rank() == 0:
            print "in_files=", in_files

    # Open the files in the input directory
    o_files = []
    for onefile in in_files[0:esize]:
        if os.path.isfile(input_dir + "/" + onefile):
            o_files.append(Nio.open_file(input_dir + "/" + onefile, "r"))
        else:
            print "COULD NOT LOCATE FILE " + input_dir + onefile + "! EXITING...."
            sys.exit()

    # Store dimensions of the input fields
    if verbose == True:
        print "Getting spatial dimensions"
    nlev = -1
    ncol = -1
    nlat = -1
    nlon = -1
    lonkey = ""
    latkey = ""
    # Look at first file and get dims
    input_dims = o_files[0].dimensions
    ndims = len(input_dims)

    for key in input_dims:
        if key == "lev":
            nlev = input_dims["lev"]
        elif key == "ncol":
            ncol = input_dims["ncol"]
        elif (key == "nlon") or (key == "lon"):
            nlon = input_dims[key]
            lonkey = key
        elif (key == "nlat") or (key == "lat"):
            nlat = input_dims[key]
            latkey = key

    if nlev == -1:
        print "COULD NOT LOCATE valid dimension lev => EXITING...."
        sys.exit()

    if (ncol == -1) and ((nlat == -1) or (nlon == -1)):
        print "Need either lat/lon or ncol  => EXITING...."
        sys.exit()

    # Check if this is SE or FV data
    if ncol != -1:
        is_SE = True
    else:
        is_SE = False

    # Make sure all files have the same dimensions
    if verbose == True:
        print "Checking dimensions across files...."
        print "lev = ", nlev
        if is_SE == True:
            print "ncol = ", ncol
        else:
            print "nlat = ", nlat
            print "nlon = ", nlon

    for count, this_file in enumerate(o_files):
        input_dims = this_file.dimensions
        if is_SE == True:
            if nlev != int(input_dims["lev"]) or (ncol != int(input_dims["ncol"])):
                print "Dimension mismatch between ", in_files[0], "and", in_files[0], "!!!"
                sys.exit()
        else:
            if nlev != int(input_dims["lev"]) or (nlat != int(input_dims[latkey])) or (nlon != int(input_dims[lonkey])):
                print "Dimension mismatch between ", in_files[0], "and", in_files[0], "!!!"
                sys.exit()

    # Get 2d vars, 3d vars and all vars (For now include all variables)
    vars_dict = o_files[0].variables
    # Remove the excluded variables (specified in json file) from variable dictionary
    if ex_varlist:
        for i in ex_varlist:
            del vars_dict[i]
    num_vars = len(vars_dict)
    if verbose == True:
        print "Number of variables (including metadata) found =  ", num_vars
    str_size = 0

    d2_var_names = []
    d3_var_names = []
    num_2d = 0
    num_3d = 0

    # Which are 2d, which are 3d and max str_size
    for k, v in vars_dict.iteritems():
        var = k
        vd = v.dimensions  # all the variable's dimensions (names)
        vr = v.rank  # num dimension
        vs = v.shape  # dim values
        is_2d = False
        is_3d = False
        if is_SE == True:  # (time, lev, ncol) or (time, ncol)
            if (vr == 2) and (vs[1] == ncol):
                is_2d = True
                num_2d += 1
            elif (vr == 3) and (vs[2] == ncol and vs[1] == nlev):
                is_3d = True
                num_3d += 1
        else:  # (time, lev, nlon, nlon) or (time, nlat, nlon)
            if (vr == 3) and (vs[1] == nlat and vs[2] == nlon):
                is_2d = True
                num_2d += 1
            elif (vr == 4) and (vs[2] == nlat and vs[3] == nlon and vs[1] == nlev):
                is_3d = True
                num_3d += 1
        if is_3d == True:
            str_size = max(str_size, len(k))
            d3_var_names.append(k)
        elif is_2d == True:
            str_size = max(str_size, len(k))
            d2_var_names.append(k)

    # Now sort these and combine (this sorts caps first, then lower case -
    # which is what we want)
    d2_var_names.sort()
    d3_var_names.sort()

    # All vars is 3d vars first (sorted), the 2d vars
    all_var_names = list(d3_var_names)
    all_var_names += d2_var_names
    n_all_var_names = len(all_var_names)

    if verbose == True:
        print "num vars = ", n_all_var_names, "(3d = ", num_3d, " and 2d = ", num_2d, ")"

    # Create new summary ensemble file
    this_sumfile = opts_dict["sumfile"]

    if verbose == True:
        print "Creating ", this_sumfile, "  ..."
    if me.get_rank() == 0 | opts_dict["popens"]:
        if os.path.exists(this_sumfile):
            os.unlink(this_sumfile)

        opt = Nio.options()
        opt.PreFill = False
        opt.Format = "NetCDF4Classic"
        nc_sumfile = Nio.open_file(this_sumfile, "w", options=opt)

        # Set dimensions
        if verbose == True:
            print "Setting dimensions ....."
        if is_SE == True:
            nc_sumfile.create_dimension("ncol", ncol)
        else:
            nc_sumfile.create_dimension("nlat", nlat)
            nc_sumfile.create_dimension("nlon", nlon)
        nc_sumfile.create_dimension("nlev", nlev)
        nc_sumfile.create_dimension("ens_size", esize)
        nc_sumfile.create_dimension("nvars", num_3d + num_2d)
        nc_sumfile.create_dimension("nvars3d", num_3d)
        nc_sumfile.create_dimension("nvars2d", num_2d)
        nc_sumfile.create_dimension("str_size", str_size)

        # Set global attributes
        now = time.strftime("%c")
        if verbose == True:
            print "Setting global attributes ....."
        setattr(nc_sumfile, "creation_date", now)
        setattr(nc_sumfile, "title", "CAM verification ensemble summary file")
        setattr(nc_sumfile, "tag", opts_dict["tag"])
        setattr(nc_sumfile, "compset", opts_dict["compset"])
        setattr(nc_sumfile, "resolution", opts_dict["res"])
        setattr(nc_sumfile, "machine", opts_dict["mach"])

        # Create variables
        if verbose == True:
            print "Creating variables ....."
        v_lev = nc_sumfile.create_variable("lev", "f", ("nlev",))
        v_vars = nc_sumfile.create_variable("vars", "S1", ("nvars", "str_size"))
        v_var3d = nc_sumfile.create_variable("var3d", "S1", ("nvars3d", "str_size"))
        v_var2d = nc_sumfile.create_variable("var2d", "S1", ("nvars2d", "str_size"))
        if not opts_dict["gmonly"]:
            if is_SE == True:
                v_ens_avg3d = nc_sumfile.create_variable("ens_avg3d", "f", ("nvars3d", "nlev", "ncol"))
                v_ens_stddev3d = nc_sumfile.create_variable("ens_stddev3d", "f", ("nvars3d", "nlev", "ncol"))
                v_ens_avg2d = nc_sumfile.create_variable("ens_avg2d", "f", ("nvars2d", "ncol"))
                v_ens_stddev2d = nc_sumfile.create_variable("ens_stddev2d", "f", ("nvars2d", "ncol"))
            else:
                v_ens_avg3d = nc_sumfile.create_variable("ens_avg3d", "f", ("nvars3d", "nlev", "nlat", "nlon"))
                v_ens_stddev3d = nc_sumfile.create_variable("ens_stddev3d", "f", ("nvars3d", "nlev", "nlat", "nlon"))
                v_ens_avg2d = nc_sumfile.create_variable("ens_avg2d", "f", ("nvars2d", "nlat", "nlon"))
                v_ens_stddev2d = nc_sumfile.create_variable("ens_stddev2d", "f", ("nvars2d", "nlat", "nlon"))

            v_RMSZ = nc_sumfile.create_variable("RMSZ", "f", ("nvars", "ens_size"))
        v_gm = nc_sumfile.create_variable("global_mean", "f", ("nvars", "ens_size"))
        v_loadings_gm = nc_sumfile.create_variable("loadings_gm", "f", ("nvars", "nvars"))
        v_mu_gm = nc_sumfile.create_variable("mu_gm", "f", ("nvars",))
        v_sigma_gm = nc_sumfile.create_variable("sigma_gm", "f", ("nvars",))
        v_sigma_scores_gm = nc_sumfile.create_variable("sigma_scores_gm", "f", ("nvars",))

        # Assign vars, var3d and var2d
        if verbose == True:
            print "Assigning vars, var3d, and var2d ....."

        eq_all_var_names = []
        eq_d3_var_names = []
        eq_d2_var_names = []

        l_eq = len(all_var_names)
        for i in range(l_eq):
            tt = list(all_var_names[i])
            l_tt = len(tt)
            if l_tt < str_size:
                extra = list(" ") * (str_size - l_tt)
                tt.extend(extra)
            eq_all_var_names.append(tt)

        l_eq = len(d3_var_names)
        for i in range(l_eq):
            tt = list(d3_var_names[i])
            l_tt = len(tt)
            if l_tt < str_size:
                extra = list(" ") * (str_size - l_tt)
                tt.extend(extra)
            eq_d3_var_names.append(tt)

        l_eq = len(d2_var_names)
        for i in range(l_eq):
            tt = list(d2_var_names[i])
            l_tt = len(tt)
            if l_tt < str_size:
                extra = list(" ") * (str_size - l_tt)
                tt.extend(extra)
            eq_d2_var_names.append(tt)

        v_vars[:] = eq_all_var_names[:]
        v_var3d[:] = eq_d3_var_names[:]
        v_var2d[:] = eq_d2_var_names[:]

        # Time-invarient metadata
        if verbose == True:
            print "Assigning time invariant metadata ....."
        lev_data = vars_dict["lev"]
        v_lev = lev_data

        # Form ensembles, each missing one member; compute RMSZs and global means
        # for each variable, we also do max norm also (currently done in pyStats)
    tslice = opts_dict["tslice"]

    if not opts_dict["cumul"]:
        # Partition the var list
        var3_list_loc = me.partition(d3_var_names, func=EqualStride(), involved=True)
        var2_list_loc = me.partition(d2_var_names, func=EqualStride(), involved=True)
    else:
        var3_list_loc = d3_var_names
        var2_list_loc = d2_var_names

    # Calculate global means #
    if verbose == True:
        print "Calculating global means ....."
    if not opts_dict["cumul"]:
        gm3d, gm2d = pyEnsLib.generate_global_mean_for_summary(
            o_files, var3_list_loc, var2_list_loc, is_SE, False, opts_dict
        )
    if verbose == True:
        print "Finish calculating global means ....."

    # Calculate RMSZ scores
    if verbose == True:
        print "Calculating RMSZ scores ....."
    if (not opts_dict["gmonly"]) | (opts_dict["cumul"]):
        zscore3d, zscore2d, ens_avg3d, ens_stddev3d, ens_avg2d, ens_stddev2d, temp1, temp2 = pyEnsLib.calc_rmsz(
            o_files, var3_list_loc, var2_list_loc, is_SE, opts_dict
        )

    # Calculate max norm ensemble
    if opts_dict["maxnorm"]:
        if verbose == True:
            print "Calculating max norm of ensembles ....."
        pyEnsLib.calculate_maxnormens(opts_dict, var3_list_loc)
        pyEnsLib.calculate_maxnormens(opts_dict, var2_list_loc)

    if opts_dict["mpi_enable"] & (not opts_dict["popens"]):

        if not opts_dict["cumul"]:
            # Gather the 3d variable results from all processors to the master processor
            slice_index = get_stride_list(len(d3_var_names), me)

            # Gather global means 3d results
            gm3d = gather_npArray(gm3d, me, slice_index, (len(d3_var_names), len(o_files)))

            if not opts_dict["gmonly"]:
                # Gather zscore3d results
                zscore3d = gather_npArray(zscore3d, me, slice_index, (len(d3_var_names), len(o_files)))

                # Gather ens_avg3d and ens_stddev3d results
                shape_tuple3d = get_shape(ens_avg3d.shape, len(d3_var_names), me.get_rank())
                ens_avg3d = gather_npArray(ens_avg3d, me, slice_index, shape_tuple3d)
                ens_stddev3d = gather_npArray(ens_stddev3d, me, slice_index, shape_tuple3d)

                # Gather 2d variable results from all processors to the master processor
            slice_index = get_stride_list(len(d2_var_names), me)

            # Gather global means 2d results
            gm2d = gather_npArray(gm2d, me, slice_index, (len(d2_var_names), len(o_files)))

            if not opts_dict["gmonly"]:
                # Gather zscore2d results
                zscore2d = gather_npArray(zscore2d, me, slice_index, (len(d2_var_names), len(o_files)))

                # Gather ens_avg3d and ens_stddev2d results
                shape_tuple2d = get_shape(ens_avg2d.shape, len(d2_var_names), me.get_rank())
                ens_avg2d = gather_npArray(ens_avg2d, me, slice_index, shape_tuple2d)
                ens_stddev2d = gather_npArray(ens_stddev2d, me, slice_index, shape_tuple2d)

        else:
            gmall = np.concatenate((temp1, temp2), axis=0)
            gmall = pyEnsLib.gather_npArray_pop(gmall, me, (me.get_size(), len(d3_var_names) + len(d2_var_names)))
    # Assign to file:
    if me.get_rank() == 0 | opts_dict["popens"]:
        if not opts_dict["cumul"]:
            gmall = np.concatenate((gm3d, gm2d), axis=0)
            if not opts_dict["gmonly"]:
                Zscoreall = np.concatenate((zscore3d, zscore2d), axis=0)
                v_RMSZ[:, :] = Zscoreall[:, :]
            if not opts_dict["gmonly"]:
                if is_SE == True:
                    v_ens_avg3d[:, :, :] = ens_avg3d[:, :, :]
                    v_ens_stddev3d[:, :, :] = ens_stddev3d[:, :, :]
                    v_ens_avg2d[:, :] = ens_avg2d[:, :]
                    v_ens_stddev2d[:, :] = ens_stddev2d[:, :]
                else:
                    v_ens_avg3d[:, :, :, :] = ens_avg3d[:, :, :, :]
                    v_ens_stddev3d[:, :, :, :] = ens_stddev3d[:, :, :, :]
                    v_ens_avg2d[:, :, :] = ens_avg2d[:, :, :]
                    v_ens_stddev2d[:, :, :] = ens_stddev2d[:, :, :]
        else:
            gmall_temp = np.transpose(gmall[:, :])
            gmall = gmall_temp
        mu_gm, sigma_gm, standardized_global_mean, loadings_gm, scores_gm = pyEnsLib.pre_PCA(gmall)
        v_gm[:, :] = gmall[:, :]
        v_mu_gm[:] = mu_gm[:]
        v_sigma_gm[:] = sigma_gm[:].astype(np.float32)
        v_loadings_gm[:, :] = loadings_gm[:, :]
        v_sigma_scores_gm[:] = scores_gm[:]

        print "All Done"
def main(argv):

    print('Running pyEnsSum!')

    # Get command line stuff and store in a dictionary
    s = 'tag= compset= esize= tslice= res= sumfile= indir= sumfiledir= mach= verbose jsonfile= mpi_enable maxnorm gmonly popens cumul regx= startMon= endMon= fIndex='
    optkeys = s.split()
    try:
        opts, args = getopt.getopt(argv, "h", optkeys)
    except getopt.GetoptError:
        pyEnsLib.EnsSum_usage()
        sys.exit(2)

    # Put command line options in a dictionary - also set defaults
    opts_dict={}

    # Defaults
    opts_dict['tag'] = ''
    opts_dict['compset'] = ''
    opts_dict['mach'] = ''
    opts_dict['esize'] = 151
    opts_dict['tslice'] = 0
    opts_dict['res'] = ''
    opts_dict['sumfile'] = 'ens.summary.nc'
    opts_dict['indir'] = './'
    opts_dict['sumfiledir'] = './'
    opts_dict['jsonfile'] = ''
    opts_dict['verbose'] = True
    opts_dict['mpi_enable'] = False
    opts_dict['maxnorm'] = False
    opts_dict['gmonly'] = False
    opts_dict['popens'] = False
    opts_dict['cumul'] = False
    opts_dict['regx'] = 'test'
    opts_dict['startMon'] = 1
    opts_dict['endMon'] = 1
    opts_dict['fIndex'] = 151

    # This creates the dictionary of input arguments
    opts_dict = pyEnsLib.getopt_parseconfig(opts,optkeys,'ES',opts_dict)

    verbose = opts_dict['verbose']

    st = opts_dict['esize']
    esize = int(st)

    if (verbose == True):
        print(opts_dict)
        print('Ensemble size for summary = ', esize)

    if not (opts_dict['tag'] and opts_dict['compset'] and opts_dict['mach'] or opts_dict['res']):
       print('Please specify --tag, --compset, --mach and --res options')
       sys.exit()

    # Now find file names in indir
    input_dir = opts_dict['indir']
    # The var list that will be excluded
    ex_varlist=[]

    # Create a mpi simplecomm object
    if opts_dict['mpi_enable']:
        me=simplecomm.create_comm()
    else:
        me=simplecomm.create_comm(not opts_dict['mpi_enable'])


    if me.get_rank() == 0:
    if opts_dict['jsonfile']:
        # Read in the excluded var list
        ex_varlist=pyEnsLib.read_jsonlist(opts_dict['jsonfile'],'ES')

    # Broadcast the excluded var list to each processor
    if opts_dict['mpi_enable']:
    ex_varlist=me.partition(ex_varlist,func=Duplicate(),involved=True)

    in_files=[]
    if(os.path.exists(input_dir)):
        # Get the list of files
        in_files_temp = os.listdir(input_dir)
        in_files=sorted(in_files_temp)
        #print in_files
        # Make sure we have enough
        num_files = len(in_files)
        if (verbose == True):
            print('Number of files in input directory = ', num_files)
        if (num_files < esize):
            print('Number of files in input directory (',num_files,
                ') is less than specified ensemble size of ', esize)
            sys.exit(2)
        if (num_files > esize):
            print('NOTE: Number of files in ', input_dir,
                'is greater than specified ensemble size of ', esize,
                '\nwill just use the first ',  esize, 'files')
    else:
        print('Input directory: ',input_dir,' not found')
        sys.exit(2)

    if opts_dict['cumul']:
        if opts_dict['regx']:
           in_files_list=get_cumul_filelist(opts_dict,opts_dict['indir'],opts_dict['regx'])
        in_files=me.partition(in_files_list,func=EqualLength(),involved=True)
        if me.get_rank()==0:
           print('in_files=',in_files)

    # Open the files in the input directory
    o_files=[]
    for onefile in in_files[0:esize]:
        if (os.path.isfile(input_dir+'/' + onefile)):
            o_files.append(Nio.open_file(input_dir+'/' + onefile,"r"))
        else:
            print("COULD NOT LOCATE FILE "+ input_dir + onefile + "! EXITING....")
            sys.exit()

    # Store dimensions of the input fields
    if (verbose == True):
        print("Getting spatial dimensions")
    nlev = -1
    ncol = -1
    nlat = -1
    nlon = -1
    lonkey=''
    latkey=''
    # Look at first file and get dims
    input_dims = o_files[0].dimensions
    ndims = len(input_dims)

    for key in input_dims:
        if key == "lev":
            nlev = input_dims["lev"]
        elif key == "ncol":
            ncol = input_dims["ncol"]
        elif (key == "nlon") or (key =="lon"):
            nlon = input_dims[key]
            lonkey=key
        elif (key == "nlat") or (key == "lat"):
            nlat = input_dims[key]
            latkey=key

    if (nlev == -1) :
        print("COULD NOT LOCATE valid dimension lev => EXITING....")
        sys.exit()

    if (( ncol == -1) and ((nlat == -1) or (nlon == -1))):
        print("Need either lat/lon or ncol  => EXITING....")
        sys.exit()

    # Check if this is SE or FV data
    if (ncol != -1):
        is_SE = True
    else:
        is_SE = False

    # Make sure all files have the same dimensions
    if (verbose == True):
        print("Checking dimensions across files....")
        print('lev = ', nlev)
        if (is_SE == True):
            print('ncol = ', ncol)
        else:
            print('nlat = ', nlat)
            print('nlon = ', nlon)

    for count, this_file in enumerate(o_files):
        input_dims = this_file.dimensions
        if (is_SE == True):
            if ( nlev != int(input_dims["lev"]) or ( ncol != int(input_dims["ncol"]))):
                print("Dimension mismatch between ", in_files[0], 'and', in_files[0], '!!!')
                sys.exit()
        else:
            if ( nlev != int(input_dims["lev"]) or ( nlat != int(input_dims[latkey]))\
                  or ( nlon != int(input_dims[lonkey]))):
                print("Dimension mismatch between ", in_files[0], 'and', in_files[0], '!!!')
                sys.exit()

    # Get 2d vars, 3d vars and all vars (For now include all variables)
    vars_dict = o_files[0].variables
    # Remove the excluded variables (specified in json file) from variable dictionary
    if ex_varlist:
    for i in ex_varlist:
            if i in vars_dict:
           del vars_dict[i]
    num_vars = len(vars_dict)
    if (verbose == True):
        print('Number of variables (including metadata) found =  ', num_vars)
    str_size = 0

    d2_var_names = []
    d3_var_names = []
    num_2d = 0
    num_3d = 0

    # Which are 2d, which are 3d and max str_size
    for k,v in vars_dict.iteritems():
        var = k
        vd = v.dimensions # all the variable's dimensions (names)
        vr = v.rank # num dimension
        vs = v.shape # dim values
        is_2d = False
        is_3d = False
        if (is_SE == True): # (time, lev, ncol) or (time, ncol)
        if ((vr == 2) and (vs[1] == ncol)):
        is_2d = True
        num_2d += 1
        elif ((vr == 3) and (vs[2] == ncol and vs[1] == nlev )):
        is_3d = True
        num_3d += 1
        else: # (time, lev, nlon, nlon) or (time, nlat, nlon)
            if ((vr == 3) and (vs[1] == nlat and vs[2] == nlon)):
                is_2d = True
                num_2d += 1
            elif ((vr == 4) and (vs[2] == nlat and vs[3] == nlon and vs[1] == nlev )):
                is_3d = True
                num_3d += 1
        if (is_3d == True) :
            str_size = max(str_size, len(k))
            d3_var_names.append(k)
        elif  (is_2d == True):
            str_size = max(str_size, len(k))
            d2_var_names.append(k)


    # Now sort these and combine (this sorts caps first, then lower case -
    # which is what we want)
    d2_var_names.sort()
    d3_var_names.sort()


    # All vars is 3d vars first (sorted), the 2d vars
    all_var_names = list(d3_var_names)
    all_var_names += d2_var_names
    n_all_var_names = len(all_var_names)

    if (verbose == True):
        print('num vars = ', n_all_var_names, '(3d = ', num_3d, ' and 2d = ', num_2d, ")")

    # Create new summary ensemble file
    this_sumfile = opts_dict["sumfile"]

    if (verbose == True):
        print("Creating ", this_sumfile, "  ...")
    if(me.get_rank() ==0 | opts_dict["popens"]):
    if os.path.exists(this_sumfile):
        os.unlink(this_sumfile)

    opt = Nio.options()
    opt.PreFill = False
    opt.Format = 'NetCDF4Classic'
    nc_sumfile = Nio.open_file(this_sumfile, 'w', options=opt)

    # Set dimensions
    if (verbose == True):
        print("Setting dimensions .....")
    if (is_SE == True):
        nc_sumfile.create_dimension('ncol', ncol)
    else:
        nc_sumfile.create_dimension('nlat', nlat)
        nc_sumfile.create_dimension('nlon', nlon)
    nc_sumfile.create_dimension('nlev', nlev)
    nc_sumfile.create_dimension('ens_size', esize)
    nc_sumfile.create_dimension('nvars', num_3d + num_2d)
    nc_sumfile.create_dimension('nvars3d', num_3d)
    nc_sumfile.create_dimension('nvars2d', num_2d)
    nc_sumfile.create_dimension('str_size', str_size)

    # Set global attributes
    now = time.strftime("%c")
    if (verbose == True):
        print("Setting global attributes .....")
    setattr(nc_sumfile, 'creation_date',now)
    setattr(nc_sumfile, 'title', 'CAM verification ensemble summary file')
    setattr(nc_sumfile, 'tag', opts_dict["tag"])
    setattr(nc_sumfile, 'compset', opts_dict["compset"])
    setattr(nc_sumfile, 'resolution', opts_dict["res"])
    setattr(nc_sumfile, 'machine', opts_dict["mach"])

    # Create variables
    if (verbose == True):
        print("Creating variables .....")
    v_lev = nc_sumfile.create_variable("lev", 'f', ('nlev',))
    v_vars = nc_sumfile.create_variable("vars", 'S1', ('nvars', 'str_size'))
    v_var3d = nc_sumfile.create_variable("var3d", 'S1', ('nvars3d', 'str_size'))
    v_var2d = nc_sumfile.create_variable("var2d", 'S1', ('nvars2d', 'str_size'))
        if not opts_dict['gmonly']:
        if (is_SE == True):
        v_ens_avg3d = nc_sumfile.create_variable("ens_avg3d", 'f', ('nvars3d', 'nlev', 'ncol'))
        v_ens_stddev3d = nc_sumfile.create_variable("ens_stddev3d", 'f', ('nvars3d', 'nlev', 'ncol'))
        v_ens_avg2d = nc_sumfile.create_variable("ens_avg2d", 'f', ('nvars2d', 'ncol'))
        v_ens_stddev2d = nc_sumfile.create_variable("ens_stddev2d", 'f', ('nvars2d', 'ncol'))
        else:
        v_ens_avg3d = nc_sumfile.create_variable("ens_avg3d", 'f', ('nvars3d', 'nlev', 'nlat', 'nlon'))
        v_ens_stddev3d = nc_sumfile.create_variable("ens_stddev3d", 'f', ('nvars3d', 'nlev', 'nlat', 'nlon'))
        v_ens_avg2d = nc_sumfile.create_variable("ens_avg2d", 'f', ('nvars2d', 'nlat', 'nlon'))
        v_ens_stddev2d = nc_sumfile.create_variable("ens_stddev2d", 'f', ('nvars2d', 'nlat', 'nlon'))

        v_RMSZ = nc_sumfile.create_variable("RMSZ", 'f', ('nvars', 'ens_size'))
    v_gm = nc_sumfile.create_variable("global_mean", 'f', ('nvars', 'ens_size'))
    v_loadings_gm = nc_sumfile.create_variable('loadings_gm','f',('nvars','nvars'))
    v_mu_gm = nc_sumfile.create_variable('mu_gm','f',('nvars',))
    v_sigma_gm = nc_sumfile.create_variable('sigma_gm','f',('nvars',))
    v_sigma_scores_gm = nc_sumfile.create_variable('sigma_scores_gm','f',('nvars',))


    # Assign vars, var3d and var2d
    if (verbose == True):
        print("Assigning vars, var3d, and var2d .....")

    eq_all_var_names =[]
    eq_d3_var_names = []
    eq_d2_var_names = []

    l_eq = len(all_var_names)
    for i in range(l_eq):
        tt = list(all_var_names[i])
        l_tt = len(tt)
        if (l_tt < str_size):
        extra = list(' ')*(str_size - l_tt)
        tt.extend(extra)
        eq_all_var_names.append(tt)

    l_eq = len(d3_var_names)
    for i in range(l_eq):
        tt = list(d3_var_names[i])
        l_tt = len(tt)
        if (l_tt < str_size):
        extra = list(' ')*(str_size - l_tt)
        tt.extend(extra)
        eq_d3_var_names.append(tt)

    l_eq = len(d2_var_names)
    for i in range(l_eq):
        tt = list(d2_var_names[i])
        l_tt = len(tt)
        if (l_tt < str_size):
        extra = list(' ')*(str_size - l_tt)
        tt.extend(extra)
        eq_d2_var_names.append(tt)

    v_vars[:] = eq_all_var_names[:]
    v_var3d[:] = eq_d3_var_names[:]
    v_var2d[:] = eq_d2_var_names[:]

    # Time-invarient metadata
    if (verbose == True):
        print("Assigning time invariant metadata .....")
    lev_data = vars_dict["lev"]
    v_lev = lev_data

    # Form ensembles, each missing one member; compute RMSZs and global means
    #for each variable, we also do max norm also (currently done in pyStats)
    tslice = opts_dict['tslice']

    if not opts_dict['cumul']:
        # Partition the var list
        var3_list_loc=me.partition(d3_var_names,func=EqualStride(),involved=True)
        var2_list_loc=me.partition(d2_var_names,func=EqualStride(),involved=True)
    else:
        var3_list_loc=d3_var_names
        var2_list_loc=d2_var_names

    # Calculate global means #
    if (verbose == True):
        print("Calculating global means .....")
    if not opts_dict['cumul']:
        gm3d,gm2d = pyEnsLib.generate_global_mean_for_summary(o_files,var3_list_loc,var2_list_loc , is_SE, False,opts_dict)
    if (verbose == True):
        print("Finish calculating global means .....")

    # Calculate RMSZ scores
    if (verbose == True):
        print("Calculating RMSZ scores .....")
    if (not opts_dict['gmonly']) | (opts_dict['cumul']):
        zscore3d,zscore2d,ens_avg3d,ens_stddev3d,ens_avg2d,ens_stddev2d,temp1,temp2=pyEnsLib.calc_rmsz(o_files,var3_list_loc,var2_list_loc,is_SE,opts_dict)

    # Calculate max norm ensemble
    if opts_dict['maxnorm']:
    if (verbose == True):
        print("Calculating max norm of ensembles .....")
    pyEnsLib.calculate_maxnormens(opts_dict,var3_list_loc)
    pyEnsLib.calculate_maxnormens(opts_dict,var2_list_loc)

    if opts_dict['mpi_enable'] & ( not opts_dict['popens']):

        if not opts_dict['cumul']:
        # Gather the 3d variable results from all processors to the master processor
        slice_index=get_stride_list(len(d3_var_names),me)

        # Gather global means 3d results
        gm3d=gather_npArray(gm3d,me,slice_index,(len(d3_var_names),len(o_files)))

        if not opts_dict['gmonly']:
        # Gather zscore3d results
        zscore3d=gather_npArray(zscore3d,me,slice_index,(len(d3_var_names),len(o_files)))

        # Gather ens_avg3d and ens_stddev3d results
        shape_tuple3d=get_shape(ens_avg3d.shape,len(d3_var_names),me.get_rank())
        ens_avg3d=gather_npArray(ens_avg3d,me,slice_index,shape_tuple3d)
        ens_stddev3d=gather_npArray(ens_stddev3d,me,slice_index,shape_tuple3d)

        # Gather 2d variable results from all processors to the master processor
        slice_index=get_stride_list(len(d2_var_names),me)

        # Gather global means 2d results
        gm2d=gather_npArray(gm2d,me,slice_index,(len(d2_var_names),len(o_files)))

        if not opts_dict['gmonly']:
        # Gather zscore2d results
        zscore2d=gather_npArray(zscore2d,me,slice_index,(len(d2_var_names),len(o_files)))

        # Gather ens_avg3d and ens_stddev2d results
        shape_tuple2d=get_shape(ens_avg2d.shape,len(d2_var_names),me.get_rank())
        ens_avg2d=gather_npArray(ens_avg2d,me,slice_index,shape_tuple2d)
        ens_stddev2d=gather_npArray(ens_stddev2d,me,slice_index,shape_tuple2d)

        else:
        gmall=np.concatenate((temp1,temp2),axis=0)
            gmall=pyEnsLib.gather_npArray_pop(gmall,me,(me.get_size(),len(d3_var_names)+len(d2_var_names)))
    # Assign to file:
    if me.get_rank() == 0 | opts_dict['popens'] :
        if not opts_dict['cumul']:
        gmall=np.concatenate((gm3d,gm2d),axis=0)
        if not opts_dict['gmonly']:
        Zscoreall=np.concatenate((zscore3d,zscore2d),axis=0)
        v_RMSZ[:,:]=Zscoreall[:,:]
        if not opts_dict['gmonly']:
        if (is_SE == True):
            v_ens_avg3d[:,:,:]=ens_avg3d[:,:,:]
            v_ens_stddev3d[:,:,:]=ens_stddev3d[:,:,:]
            v_ens_avg2d[:,:]=ens_avg2d[:,:]
            v_ens_stddev2d[:,:]=ens_stddev2d[:,:]
        else:
            v_ens_avg3d[:,:,:,:]=ens_avg3d[:,:,:,:]
            v_ens_stddev3d[:,:,:,:]=ens_stddev3d[:,:,:,:]
            v_ens_avg2d[:,:,:]=ens_avg2d[:,:,:]
            v_ens_stddev2d[:,:,:]=ens_stddev2d[:,:,:]
        else:
            gmall_temp=np.transpose(gmall[:,:])
            gmall=gmall_temp
    mu_gm,sigma_gm,standardized_global_mean,loadings_gm,scores_gm=pyEnsLib.pre_PCA(gmall)
    v_gm[:,:]=gmall[:,:]
    v_mu_gm[:]=mu_gm[:]
    v_sigma_gm[:]=sigma_gm[:].astype(np.float32)
    v_loadings_gm[:,:]=loadings_gm[:,:]
    v_sigma_scores_gm[:]=scores_gm[:]

    print("All Done")

def get_cumul_filelist(opts_dict,indir,regx):
   if not opts_dict['indir']:
      print('input dir is not specified')
      sys.exit(2)
   #regx='(pgi(.)*-(01|02))'
   regx_list=["mon","gnu","pgi"]
   all_files=[]
   for prefix in regx_list:
       for i in range(opts_dict['fIndex'],opts_dict['fIndex']+opts_dict['esize']/3):
       for j in range(opts_dict['startMon'],opts_dict['endMon']+1):
           mon_str=str(j).zfill(2)
           regx='(^'+prefix+'(.)*'+str(i)+'(.)*-('+mon_str+'))'
           print('regx=',regx)
           res=[f for f in os.listdir(indir) if re.search(regx,f)]
           in_files=sorted(res)
           all_files.extend(in_files)
   print("all_files=",all_files)
   #in_files=res
   return all_files





#
# Get the shape of all variable list in tuple for all processor
#
def get_shape(shape_tuple,shape1,rank):
    lst=list(shape_tuple)
    lst[0]=shape1
    shape_tuple=tuple(lst)
    return shape_tuple

#
# Get the mpi partition list for each processor
#
def get_stride_list(len_of_list,me):
    slice_index=[]
    for i in range(me.get_size()):
    index_arr=np.arange(len_of_list)
    slice_index.append(index_arr[i::me.get_size()])
    return slice_index

#
# Gather arrays from each processor by the var_list to the master processor and make it an array
#
def gather_npArray(npArray,me,slice_index,array_shape):
    the_array=np.zeros(array_shape,dtype=np.float32)
    if me.get_rank()==0:
    k=0
    for j in slice_index[me.get_rank()]:
         the_array[j,:]=npArray[k,:]
         k=k+1
    for i in range(1,me.get_size()):
    if me.get_rank() == 0:
        rank,npArray=me.collect()
        k=0
        for j in slice_index[rank]:
        the_array[j,:]=npArray[k,:]
        k=k+1
    if me.get_rank() != 0:
    message={"from_rank":me.get_rank(),"shape":npArray.shape}
    me.collect(npArray)
    me.sync()
    return the_array

if __name__ == "__main__":
    main(sys.argv[1:])