Beispiel #1
0
def tecdPerLOS(stec, intervals, mask=None, eps=1, 
               tsps=30, polynom_list=None, zero_mean=False):
    tecd = np.nan * np.ones(stec.size)
    if mask is None:
        mask = np.zeros(stec.size, dtype=bool)
    for ir, r in enumerate(intervals):
        chunk = stec[r[0]+1 : r[1]-1]
        idf = np.isfinite(chunk)
        if np.sum(np.isfinite(chunk)) < (15 * (60/tsps)): 
            err_list = np.array([])
            continue
        if np.sum(np.isnan(chunk)) > 0:
            chunk = uf.cubicSplineFit(chunk, idf)
        
        res, err_list0, po  = uf.detrend(chunk, polynom_list=polynom_list, eps=eps, mask=mask[r[0]+1 : r[1]-1], polynomial_order=True)
        if ir == 0 or len(err_list) == 0:
            err_list = err_list0
        else:
            err_list = np.vstack((err_list, err_list0))
        res[~idf] = np.nan
        if zero_mean:
            if abs(np.nansum(res)) < 5:
                tecd[r[0]+1 : r[1]-1] = res
        else:
            tecd[r[0]+1 : r[1]-1] = res
    
    return tecd
Beispiel #2
0
def tecdPerLOS(stec,
               intervals,
               mask,
               eps=1,
               polynom_list=None,
               zero_mean=False,
               filter='polynomial'):
    tecd = np.nan * np.ones(stec.size)

    for ir, r in enumerate(intervals):
        chunk = stec[r[0] + 1:r[1] - 1]
        idf = np.isfinite(chunk)
        if np.sum(np.isfinite(chunk)) < (15 * (60 / tsps)):
            continue
        if np.sum(np.isnan(chunk)) > 0:
            chunk = gu.cubicSplineFit(chunk, idf)

        if filter == 'polynomial':
            res, err_list0, po = gu.detrend(chunk,
                                            polynom_list=polynom_list,
                                            eps=eps,
                                            mask=mask[r[0] + 1:r[1] - 1],
                                            polynomial_order=True)
        polynom_orders.append([np.squeeze(np.diff(r)) / (60 / tsps), po])
        delta_eps.append(abs(np.diff(err_list0)[-1]))
        if ir == 0 or 'err_list' not in locals():
            err_list = err_list0
        else:
            err_list = np.vstack((err_list, err_list0))
        res[~idf] = np.nan
        if zero_mean:
            if abs(np.nansum(res)) < 5:
                tecd[r[0] + 1:r[1] - 1] = res
        else:
            tecd[r[0] + 1:r[1] - 1] = res

    return tecd, err_list