Beispiel #1
0
 def test_output_h5_file_already_exists(self):
     with h5py.File(image_path.replace('.png', '.h5')) as _:
         pass
     with self.assertRaises(FileExistsError):
         translator = ImageTranslator()
         _ = translator.translate(image_path)
Beispiel #2
0
 def test_path_not_str(self):
     with self.assertRaises(TypeError):
         translator = ImageTranslator()
         _ = translator.translate(np.arange(4))
Beispiel #3
0
 def test_path_does_not_exist(self):
     with self.assertRaises(FileNotFoundError):
         translator = ImageTranslator()
         _ = translator.translate('no_such_file.png')
Beispiel #4
0
 def test_invalid_interp(self):
     with self.assertRaises(ValueError):
         translator = ImageTranslator()
         _ = translator.translate(image_path,
                                  bin_factor=2,
                                  interp_func='dsdsdsd')
Beispiel #5
0
 def test_invalid_h5_path(self):
     with self.assertRaises(TypeError):
         translator = ImageTranslator()
         _ = translator.translate(image_path, h5_path=np.arange(4))
Beispiel #6
0
 def test_invalid_dtype(self):
     with self.assertRaises(TypeError):
         translator = ImageTranslator()
         _ = translator.translate(image_path, bin_factor=['dfrdd', True])
Beispiel #7
0
 def test_float_parms(self):
     with self.assertRaises(TypeError):
         translator = ImageTranslator()
         _ = translator.translate(image_path, bin_factor=1.34)
Beispiel #8
0
 def test_neg_parms(self):
     with self.assertRaises(ValueError):
         translator = ImageTranslator()
         _ = translator.translate(image_path, bin_factor=-2)
Beispiel #9
0
 def test_too_many_dims(self):
     with self.assertRaises(ValueError):
         translator = ImageTranslator()
         _ = translator.translate(image_path, bin_factor=(1, 2, 3))
Beispiel #10
0
    def main_translate(self, **kwargs):

        h5_path = kwargs.pop('h5_path', image_path.replace('.png', '.h5'))
        delete_existing_file(h5_path)

        input_image = rand_image.copy()
        usize, vsize = input_image.shape[:2]

        translator = ImageTranslator()
        h5_path = translator.translate(image_path, **kwargs)

        image_parms = dict()

        if 'bin_factor' in kwargs.keys():
            bin_factor = kwargs.pop('bin_factor')
            if bin_factor is None:
                _ = kwargs.pop('interp_func', None)
            else:
                if isinstance(bin_factor, int):
                    bin_factor = (bin_factor, bin_factor)
                interp_func = kwargs.pop('interp_func', Image.BICUBIC)

                image_parms.update({
                    'image_binning_size': np.array(bin_factor),
                    'image_PIL_resample_mode': interp_func
                })

                img_obj = Image.fromarray(input_image)
                img_obj = img_obj.convert(mode="L")
                img_obj = img_obj.resize(
                    (int(vsize / bin_factor[1]), int(usize / bin_factor[0])),
                    resample=interp_func)
                input_image = np.asarray(img_obj)

        image_parms.update({'normalized': False})
        input_image = input_image.copy()
        if 'normalize' in kwargs.keys():
            normalize = kwargs.pop('normalize')
            if normalize:
                input_image -= np.min(input_image)
                input_image = input_image / np.float32(np.max(input_image))
                image_parms.update({'normalized': True})

        image_parms.update({
            'image_min': np.min(input_image),
            'image_max': np.max(input_image)
        })
        with h5py.File(h5_path, mode='r') as h5_f:

            self.basic_file_validation(h5_f)

            h5_meas_grp = h5_f['Measurement_000']
            h5_chan_grp = h5_meas_grp['Channel_000']
            usid_main = USIDataset(h5_chan_grp['Raw_Data'])

            # check the attributes under this group
            for key, expected_val in image_parms.items():
                self.assertTrue(
                    np.all(
                        hdf_utils.get_attr(h5_meas_grp, key) == expected_val))

            one_d_image = input_image.T.reshape(-1, 1)
            self.assertTrue(np.allclose(one_d_image, usid_main[()]))
            # self.assertTrue(np.allclose(rand_image, np.reshape(usid_main[()], rand_image.shape)))

            pos_data = np.vstack((np.tile(np.arange(input_image.shape[0]),
                                          input_image.shape[1]),
                                  np.repeat(np.arange(input_image.shape[1]),
                                            input_image.shape[0]))).T

            validate_aux_dset_pair(self,
                                   h5_chan_grp,
                                   usid_main.h5_pos_inds,
                                   usid_main.h5_pos_vals, ['Y', 'X'],
                                   ['a.u.', 'a.u.'],
                                   pos_data,
                                   h5_main=usid_main,
                                   is_spectral=False)

        delete_existing_file(h5_path)