def flandmark_init(model=MODEL):
    flandmark = PyFlandmark(model, False)

    # Initialize featurePool
    bw = flandmark.getBaseWindowSize()
    featurePool = PyFeaturePool(bw[0], bw[1], None)
    featurePool.addFeatuaddSparseLBPfeatures()

    flandmark.setFeaturePool(featurePool)

    return flandmark
Beispiel #2
0
        returns 2x2 matrix coordinates of
        left upper and right lower corners
        of rectangle that contains face stored
        in columns of matrix
    """
    f = open(file_name)
    str = f.read().replace(',', ' ')
    f.close()
    ret = np.array(list(map(int,str.split())) ,dtype=np.int32)
    ret = ret.reshape((2,2), order='F')
    return ret


DIR = '../../../data/Images/'
JPGS = [f for f in os.listdir(DIR) if fnmatch(f, '*.jpg')]
flmrk = PyFlandmark("../../../data/flandmark_model.xml", False)


for jpg_name in JPGS:

    file_name = jpg_name[:-4]
    img = Image.open(DIR + jpg_name)
    arr = rgb2gray(np.asarray(img))
    bbox = read_bbox_from_txt(DIR + jpg_name[:-4] + '.det')

    d_landmarks = flmrk.detect(arr, bbox)
    n = d_landmarks.shape[1]

    print("test detect method")

    im = Image.fromarray(arr)
        returns 2x2 matrix coordinates of
        left upper and right lower corners
        of rectangle that contains face stored
        in columns of matrix
    """
    f = open(file_name)
    str = f.read().replace(',', ' ')
    f.close()
    ret = np.array(map(int, str.split()), dtype=np.int32)
    ret = ret.reshape((2, 2), order='F')
    return ret


DIR = '../../../data/Images/'
JPGS = [f for f in os.listdir(DIR) if fnmatch(f, '*.jpg')]
flmrk = PyFlandmark("../../../data/flandmark_model.xml", False)

for jpg_name in JPGS:

    file_name = jpg_name[:-4]
    img = Image.open(DIR + jpg_name)
    arr = rgb2gray(np.asarray(img))
    bbox = read_bbox_from_txt(DIR + jpg_name[:-4] + '.det')

    d_landmarks = flmrk.detect(arr, bbox)
    n = d_landmarks.shape[1]

    print "test detect method"

    im = Image.fromarray(arr)
    img_dr = ImageDraw.Draw(im)
Beispiel #4
0
		returns 2x2 matrix coordinates of 
		left upper and right lower corners
		of rectangle that contains face stored
		in columns of matrix
	"""
    f = open(file_name)
    str = f.read().replace(",", " ")
    f.close()
    ret = np.array(map(int, str.split()), dtype=np.int32)
    ret = ret.reshape((2, 2), order="F")
    return ret


DIR = "../../../data/Images/"
JPGS = [f for f in os.listdir(DIR) if fnmatch(f, "*.jpg")]
flmrk = PyFlandmark("../../../data/flandmark_model.xml", False)


for jpg_name in JPGS:

    file_name = jpg_name[:-4]
    img = Image.open(DIR + jpg_name)
    arr = rgb2gray(np.asarray(img))
    bbox = read_bbox_from_txt(DIR + jpg_name[:-4] + ".det")

    d_landmarks = flmrk.detect(arr, bbox)
    n = d_landmarks.shape[1]

    print "test detect method"

    im = Image.fromarray(arr)
Beispiel #5
0
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 05 16:26:55 2017

@author: uricar.michal
"""

import sys
sys.path.append("D:/GitHub/clandmark/install/share/clandmark/python/")

from py_flandmark import PyFlandmark
from py_featurePool import PyFeaturePool

#flandmark = PyFlandmark("D:/GitHub/clandmark/matlab_interface/models/FDPM.xml", False)
flandmark = PyFlandmark("D:/GitHub/clandmark/matlab_interface/models/CDPM.xml", False)

bw = flandmark.getBaseWindowSize()
featurePool = PyFeaturePool(bw[0], bw[1], None)
featurePool.addFeatuaddSparseLBPfeatures()

flandmark.setFeaturePool(featurePool)

import time
import numpy as np
import cv2

def rgb2gray(rgb):
	"""
	converts rgb array to grey scale variant
	accordingly to fomula taken from wiki
	(this function is missing in python)
    flandmark = PyFlandmark(model, False)

    # Initialize featurePool
    bw = flandmark.getBaseWindowSize()
    featurePool = PyFeaturePool(bw[0], bw[1], None)
    featurePool.addFeatuaddSparseLBPfeatures()

    flandmark.setFeaturePool(featurePool)

    return flandmark


if __name__ == '__main__':

    # flandmark = flandmark_init()
    flandmark = PyFlandmark(MODEL, False)
    # Initialize featurePool
    bw = flandmark.getBaseWindowSize()
    featurePool = PyFeaturePool(bw[0], bw[1], None)
    featurePool.addFeatuaddSparseLBPfeatures()
    flandmark.setFeaturePool(featurePool)

    faceCascade = cv2.CascadeClassifier(CV_CASCADE_PATH)

    video_capture = cv2.VideoCapture(CAM_ID)

    while True:
        # Capture frame-by-frame
        ret, frame = video_capture.read()

        gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
Beispiel #7
0
# -*- coding: utf-8 -*-
"""
Created on Sun Feb 05 16:26:55 2017

@author: uricar.michal
"""

import sys

sys.path.append("D:/GitHub/clandmark/install/share/clandmark/python/")

from py_flandmark import PyFlandmark
from py_featurePool import PyFeaturePool

#flandmark = PyFlandmark("D:/GitHub/clandmark/matlab_interface/models/FDPM.xml", False)
flandmark = PyFlandmark("D:/GitHub/clandmark/matlab_interface/models/CDPM.xml",
                        False)

bw = flandmark.getBaseWindowSize()
featurePool = PyFeaturePool(bw[0], bw[1], None)
featurePool.addFeatuaddSparseLBPfeatures()

flandmark.setFeaturePool(featurePool)

import time
import numpy as np
import cv2


def rgb2gray(rgb):
    """
	converts rgb array to grey scale variant
Beispiel #8
0
from py_flandmark import PyFlandmark
from py_featurePool import PyFeaturePool

# flandmark = PyFlandmark("../../../data/flandmark_model.xml", False)
# flandmark = PyFlandmark("../../../data/FRONTAL_21L.xml", False)
flandmark = PyFlandmark("../../../data/300W/FDPM.xml", False)

bw = flandmark.getBaseWindowSize()
featurePool = PyFeaturePool(bw[0], bw[1], None)
featurePool.addFeatuaddSparseLBPfeatures()

flandmark.setFeaturePool(featurePool)

import time
import numpy as np
import os
from fnmatch import fnmatch
from PIL import Image
import matplotlib.pyplot as plt
#%matplotlib inline


def rgb2gray(rgb):
    """
    converts rgb array to grey scale variant
    accordingly to fomula taken from wiki
    (this function is missing in python)
    """
    return np.dot(rgb[..., :3], [0.299, 0.587, 0.144])