Beispiel #1
0
def test_min_ws_eff_line():

    site = IEA37Site(16)
    x, y = [0, 600, 1200], [0, 0, 0]  # site.initial_position[:2].T
    windTurbines = IEA37_WindTurbines()
    wfm = IEA37SimpleBastankhahGaussian(
        site, windTurbines, deflectionModel=JimenezWakeDeflection())

    yaw_ilk = np.reshape([-30, 30, 0], (3, 1, 1))

    plt.figure(figsize=(14, 3))
    fm = wfm(x, y, yaw=yaw_ilk, wd=270, ws=10).flow_map(
        XYGrid(x=np.arange(-100, 2000, 10), y=np.arange(-500, 500, 10)))
    min_ws_line = fm.min_WS_eff()

    if 0:
        fm.plot_wake_map()
        min_ws_line.plot()
        print(np.round(min_ws_line[::10], 2))
        plt.show()
    npt.assert_array_almost_equal(min_ws_line[::10], [
        np.nan, np.nan, 11.6, 21.64, 30.42, 38.17, 45.09, 51.27, -8.65, -18.66,
        -27.51, -35.37, -42.38, -48.58, -1.09, -1.34, -1.59, -1.83, -2.07,
        -2.31, -2.56
    ], 2)
Beispiel #2
0
def test_yaw_tilt(yaw, tilt, cx, cz):
    site = IEA37Site(16)
    x, y = [0], [0]
    windTurbines = V80()

    D = windTurbines.diameter()
    wfm = IEA37SimpleBastankhahGaussian(
        site, windTurbines, deflectionModel=JimenezWakeDeflection())
    x_lst = np.linspace(-200, 1000, 100)
    y_lst = np.linspace(-100, 100, 201)
    z_lst = np.arange(10, 200, 1)

    fm_yz = wfm(x, y, wd=270, ws=10, yaw=yaw,
                tilt=tilt).flow_map(YZGrid(x=5 * D, y=y_lst, z=z_lst))
    fm_xz = wfm(x, y, wd=180, ws=10, yaw=yaw,
                tilt=tilt).flow_map(YZGrid(x=0, y=x_lst, z=z_lst))
    fm_xy = wfm(x, y, wd=270, ws=10, yaw=yaw,
                tilt=tilt).flow_map(XYGrid(x=x_lst))
    if 0:
        axes = plt.subplots(3, 1)[1].flatten()
        fm_xy.plot_wake_map(ax=axes[0])
        axes[0].axvline(5 * D)
        fm_xz.plot_wake_map(ax=axes[1])
        axes[1].axvline(5 * D)
        fm_yz.plot_wake_map(ax=axes[2])
        plt.show()

    wake_center = fm_yz.WS_eff.where(fm_yz.WS_eff == fm_yz.WS_eff.min(),
                                     drop=True).squeeze()
    npt.assert_allclose(wake_center.y, cx, atol=.1)
    npt.assert_allclose(wake_center.h, cz, atol=.24)
def test_All2AllIterativeDeflection():
    site = IEA37Site(16)
    windTurbines = IEA37_WindTurbines()
    wf_model = All2AllIterative(site, windTurbines,
                                wake_deficitModel=NOJDeficit(),
                                superpositionModel=SquaredSum(),
                                deflectionModel=JimenezWakeDeflection())
    wf_model([0], [0])
def test_str():
    site = IEA37Site(16)
    windTurbines = IEA37_WindTurbines()
    wf_model = All2AllIterative(site, windTurbines,
                                wake_deficitModel=NOJDeficit(),
                                superpositionModel=SquaredSum(),
                                blockage_deficitModel=SelfSimilarityDeficit(),
                                deflectionModel=JimenezWakeDeflection(),
                                turbulenceModel=STF2005TurbulenceModel())
    assert str(wf_model) == "All2AllIterative(EngineeringWindFarmModel, NOJDeficit-wake, SelfSimilarityDeficit-blockage, RotorCenter-rotor-average, SquaredSum-superposition, JimenezWakeDeflection-deflection, STF2005TurbulenceModel-turbulence)"
Beispiel #5
0
def test_All2AllIterativeDeflection():
    site = IEA37Site(16)
    windTurbines = IEA37_WindTurbines()
    wf_model = All2AllIterative(site,
                                windTurbines,
                                wake_deficitModel=NOJDeficit(),
                                superpositionModel=SquaredSum(),
                                deflectionModel=JimenezWakeDeflection())
    sim_res = wf_model([0, 500], [0, 0], wd=270, ws=10, yaw=30)
    if 0:
        sim_res.flow_map(
            XYGrid(x=np.linspace(-200, 1000, 100))).plot_wake_map()
        plt.show()
    wf_model = All2AllIterative(site,
                                windTurbines,
                                wake_deficitModel=NOJDeficit(),
                                superpositionModel=SquaredSum(),
                                blockage_deficitModel=SelfSimilarityDeficit(),
                                deflectionModel=JimenezWakeDeflection(),
                                turbulenceModel=STF2005TurbulenceModel())
    assert str(
        wf_model
    ) == "All2AllIterative(EngineeringWindFarmModel, NOJDeficit-wake, SelfSimilarityDeficit-blockage, RotorCenter-rotor-average, SquaredSum-superposition, JimenezWakeDeflection-deflection, STF2005TurbulenceModel-turbulence)"


@pytest.mark.parametrize(
    'wake_deficitModel,deflectionModel,superpositionModel',
    [(NOJDeficit(), None, SquaredSum()),
     (IEA37SimpleBastankhahGaussianDeficit(), JimenezWakeDeflection(),
      WeightedSum())])
def test_huge_flow_map(wake_deficitModel, deflectionModel, superpositionModel):
    site = IEA37Site(16)
    windTurbines = IEA37_WindTurbines()
    wake_model = PropagateDownwind(site,
                                   windTurbines,
                                   wake_deficitModel=wake_deficitModel,
                                   superpositionModel=superpositionModel,
                                   deflectionModel=deflectionModel,
                                   turbulenceModel=STF2005TurbulenceModel())
    n_wt = 2
    flow_map = wake_model(*site.initial_position[:n_wt].T,
                          wd=[0, 90]).flow_map(HorizontalGrid(resolution=1000))
    # check that deficit matrix > 10MB (i.e. it enters the memory saving loop)
    assert (np.prod(flow_map.WS_eff_xylk.shape) * n_wt * 8 / 1024**2) > 10
    site = IEA37Site(16)
    windTurbines = IEA37_WindTurbines()
    wf_model = All2AllIterative(site,
                                windTurbines,
                                wake_deficitModel=NOJDeficit(),
                                superpositionModel=SquaredSum(),
                                blockage_deficitModel=SelfSimilarityDeficit(),
                                deflectionModel=JimenezWakeDeflection(),
                                turbulenceModel=STF2005TurbulenceModel())
    assert str(
        wf_model
    ) == "All2AllIterative(EngineeringWindFarmModel, NOJDeficit-wake, SelfSimilarityDeficit-blockage, SquaredSum-superposition, JimenezWakeDeflection-deflection, STF2005TurbulenceModel-turbulence)"


@pytest.mark.parametrize('deflectionModel', [(None),
                                             (JimenezWakeDeflection())])
def test_huge_flow_map(deflectionModel):
    site = IEA37Site(16)
    windTurbines = IEA37_WindTurbines()
    wake_model = NOJ(site,
                     windTurbines,
                     deflectionModel=deflectionModel,
                     turbulenceModel=STF2005TurbulenceModel())
    n_wt = 2
    flow_map = wake_model(*site.initial_position[:n_wt].T,
                          wd=0).flow_map(HorizontalGrid(resolution=1000))
    # check that deficit matrix > 10MB (i.e. it enters the memory saving loop)
    assert (np.prod(flow_map.WS_eff_xylk.shape) * n_wt * 8 / 1024**2) > 10
    assert flow_map.WS_eff_xylk.shape == (1000, 1000, 1, 1)

def test_str():
    site = IEA37Site(16)
    windTurbines = IEA37_WindTurbines()
    wf_model = All2AllIterative(site, windTurbines,
                                wake_deficitModel=NOJDeficit(),
                                superpositionModel=SquaredSum(),
                                blockage_deficitModel=SelfSimilarityDeficit(),
                                deflectionModel=JimenezWakeDeflection(),
                                turbulenceModel=STF2005TurbulenceModel())
    assert str(wf_model) == "All2AllIterative(EngineeringWindFarmModel, NOJDeficit-wake, SelfSimilarityDeficit-blockage, RotorCenter-rotor-average, SquaredSum-superposition, JimenezWakeDeflection-deflection, STF2005TurbulenceModel-turbulence)"


@pytest.mark.parametrize('wake_deficitModel,deflectionModel,superpositionModel',
                         [(NOJDeficit(), None, SquaredSum()),
                          (IEA37SimpleBastankhahGaussianDeficit(), JimenezWakeDeflection(), WeightedSum())])
def test_huge_flow_map(wake_deficitModel, deflectionModel, superpositionModel):
    site = IEA37Site(16)
    windTurbines = IEA37_WindTurbines()
    wake_model = PropagateDownwind(site, windTurbines, wake_deficitModel=wake_deficitModel,
                                   superpositionModel=superpositionModel, deflectionModel=deflectionModel,
                                   turbulenceModel=STF2005TurbulenceModel())
    n_wt = 2
    flow_map = wake_model(*site.initial_position[:n_wt].T, wd=0).flow_map(HorizontalGrid(resolution=1000))
    # check that deficit matrix > 10MB (i.e. it enters the memory saving loop)
    assert (np.prod(flow_map.WS_eff_xylk.shape) * n_wt * 8 / 1024**2) > 10
    assert flow_map.WS_eff_xylk.shape == (1000, 1000, 1, 1)


def test_aep():
    site = UniformSite([1], ti=0)
Beispiel #9
0
from py_wake.deflection_models.jimenez import JimenezWakeDeflection
from py_wake.superposition_models import MaxSum
from py_wake.wind_turbines.power_ct_functions import SimpleYawModel

site = LillgrundSite()
x, y = site.initial_position.T
#keeping only every second turbine as lillegrund turbines are approx. half the size of the iea 3.4MW
x = x[::2]
y = y[::2]
# # Wind turbines and wind farm model definition
windTurbines = IEA34_130_1WT_Surrogate()  #additional_models=[SimpleYawModel()]

wfm = IEA37SimpleBastankhahGaussian(
    site,
    windTurbines,
    deflectionModel=JimenezWakeDeflection(),
    turbulenceModel=STF2017TurbulenceModel(
        addedTurbulenceSuperpositionModel=MaxSum()))

load_signals = [
    'del_blade_flap', 'del_blade_edge', 'del_tower_bottom_fa',
    'del_tower_bottom_ss', 'del_tower_top_torsion'
]
wsp = np.asarray([10, 15])
wdir = np.asarray([90])

n_wt = x.size
i = n_wt
k = wsp.size
l = wdir.size