Beispiel #1
0
    def simulation(self,
                   realtime=False,
                   trace=True,
                   gui=True,
                   initial_time=0,
                   environment_process=None,
                   **kwargs):
        """
        Prepare simulation of the model

        This does not run the simulation, it only returns the simulation object. The object can then be run using run(max_time) command.

        realtime: should the simulation be run in real time or not?
        trace: should the trace of the simulation be printed?
        gui: should the environment appear on a separate screen? (This requires tkinter.)
        initial_time: what is the starting time point of the simulation?
        environment_process: what environment process should the simulation use?
        The environment_process argument should be supplied with the method environment_process of the environment used in the model.
        kwargs are arguments that environment_process will be supplied with.
        """

        if len(self.decmems) == 1:
            for key in self.__buffers:
                self.__buffers[
                    key].dm = self.decmem  #if only one dm, let all buffers use it
        elif len([x for x in self.decmems.values() if x]) == 1:
            for key in self.__buffers:
                if not self.__buffers[key].dm:
                    self.__buffers[
                        key].dm = self.decmem  #if only one non-trivial dm, let buffers use it that do not have a dm specified

        decmem = {name: self.__buffers[name].dm for name in self.__buffers\
                if self.__buffers[name].dm != None} #dict of declarative memories used; more than 1 decmem might appear here

        self.__buffers["manual"] = motor.Motor()  #adding motor buffer

        if self.__env:
            self.__env.initial_time = initial_time  #set the initial time of the environment to be the same as simulation
            if self.visbuffers:
                self.__buffers.update(self.visbuffers)
            else:
                dm = list(decmem.values())[0]
                self.__buffers["visual"] = vision.Visual(
                    self.__env, dm)  #adding vision buffers
                self.__buffers["visual_location"] = vision.VisualLocation(
                    self.__env, dm)  #adding vision buffers

        self.productions.used_rulenames = {
        }  # remove any previously stored rules for utility learning

        used_productions = productions.ProductionRules(self.productions,
                                                       self.__buffers, decmem,
                                                       self.model_parameters)

        chunks.Chunk._similarities = self.__similarities

        return simulation.Simulation(self.__env, realtime, trace, gui,
                                     self.__buffers, used_productions,
                                     initial_time, environment_process,
                                     **kwargs)
    def visualBuffer(self, name_visual, name_visual_location, default_harvest=None, finst=4):
        """
        Create visual buffers for ACTRModel. Two buffers are present in vision: visual What buffer, called just visual buffer (encoding seen objects) and visual Where buffer, called visual_location buffer (encoding positions). Both are created and returned. Finst is relevant only for the visual location buffer.

        name_visual and name_visual_location specify the name by which the two buffers are referred to in production rules.

        """
        v1 = vision.Visual(self.__env, default_harvest)
        v2 = vision.VisualLocation(self.__env, default_harvest, finst)
        self.visbuffers[name_visual] = v1
        self.visbuffers[name_visual_location] = v2
        return v1, v2