Beispiel #1
0
P_nii = permute * P_nii
P_nii_dagger = np.linalg.pinv(P_nii.todense(), rcond=tol)
err_nii = identity(n) - P_nii * P_nii_dagger
P_nii_nnz = float(len(P_nii.data)) / np.prod(P_nii.shape)

# Form standard SA prolongation operator
T, B_coarse = fit_candidates(AggOp, B)
P_sa = jacobi_prolongation_smoother(A, T, C, B_coarse)
# P_sa = richardson_prolongation_smoother(A, T, **kwargs)
P_sa_dagger = np.linalg.pinv(P_sa.todense(), rcond=tol)
err_sa = identity(n) - P_sa * P_sa_dagger
P_sa_nnz = float(len(P_sa.data)) / np.prod(P_sa.shape)

# Form RN prolongation operator
T, B_coarse = fit_candidates(AggOp, B[:, 0:1])
Cpt_params = (True, get_Cpt_params(A, Cpts, AggOp, T))
T = scale_T(T, Cpt_params[1]['P_I'], Cpt_params[1]['I_F'])
B_coarse = Cpt_params[1]['P_I'].T * B
P_rn = energy_prolongation_smoother(A,
                                    T,
                                    C,
                                    B_coarse,
                                    B,
                                    Cpt_params=Cpt_params,
                                    maxiter=8,
                                    degree=2,
                                    weighting='local')
P_rn_dagger = np.linalg.pinv(P_rn.todense(), rcond=tol)
err_rn = identity(n) - P_rn * P_rn_dagger
P_rn_nnz = float(len(P_rn.data)) / np.prod(P_rn.shape)
Beispiel #2
0
def extend_hierarchy(levels, strength, aggregate, smooth, improve_candidates, diagonal_dominance=False, keep=True):
    """Service routine to implement the strength of connection, aggregation,
    tentative prolongation construction, and prolongation smoothing.  Called by
    smoothed_aggregation_solver.
    """

    def unpack_arg(v):
        if isinstance(v, tuple):
            return v[0], v[1]
        else:
            return v, {}

    A = levels[-1].A
    B = levels[-1].B
    if A.symmetry == "nonsymmetric":
        AH = A.H.asformat(A.format)
        BH = levels[-1].BH

    # Compute the strength-of-connection matrix C, where larger
    # C[i, j] denote stronger couplings between i and j.
    fn, kwargs = unpack_arg(strength[len(levels) - 1])
    if fn == "symmetric":
        C = symmetric_strength_of_connection(A, **kwargs)
    elif fn == "classical":
        C = classical_strength_of_connection(A, **kwargs)
    elif fn == "distance":
        C = distance_strength_of_connection(A, **kwargs)
    elif (fn == "ode") or (fn == "evolution"):
        if "B" in kwargs:
            C = evolution_strength_of_connection(A, **kwargs)
        else:
            C = evolution_strength_of_connection(A, B, **kwargs)
    elif fn == "energy_based":
        C = energy_based_strength_of_connection(A, **kwargs)
    elif fn == "predefined":
        C = kwargs["C"].tocsr()
    elif fn == "algebraic_distance":
        C = algebraic_distance(A, **kwargs)
    elif fn is None:
        C = A.tocsr()
    else:
        raise ValueError("unrecognized strength of connection method: %s" % str(fn))

    # Avoid coarsening diagonally dominant rows
    flag, kwargs = unpack_arg(diagonal_dominance)
    if flag:
        C = eliminate_diag_dom_nodes(A, C, **kwargs)

    # Compute the aggregation matrix AggOp (i.e., the nodal coarsening of A).
    # AggOp is a boolean matrix, where the sparsity pattern for the k-th column
    # denotes the fine-grid nodes agglomerated into k-th coarse-grid node.
    fn, kwargs = unpack_arg(aggregate[len(levels) - 1])
    if fn == "standard":
        AggOp, Cnodes = standard_aggregation(C, **kwargs)
    elif fn == "naive":
        AggOp, Cnodes = naive_aggregation(C, **kwargs)
    elif fn == "lloyd":
        AggOp, Cnodes = lloyd_aggregation(C, **kwargs)
    elif fn == "predefined":
        AggOp = kwargs["AggOp"].tocsr()
        Cnodes = kwargs["Cnodes"]
    else:
        raise ValueError("unrecognized aggregation method %s" % str(fn))

    # Improve near nullspace candidates by relaxing on A B = 0
    fn, kwargs = unpack_arg(improve_candidates[len(levels) - 1])
    if fn is not None:
        b = np.zeros((A.shape[0], 1), dtype=A.dtype)
        B = relaxation_as_linear_operator((fn, kwargs), A, b) * B
        levels[-1].B = B
        if A.symmetry == "nonsymmetric":
            BH = relaxation_as_linear_operator((fn, kwargs), AH, b) * BH
            levels[-1].BH = BH

    # Compute the tentative prolongator, T, which is a tentative interpolation
    # matrix from the coarse-grid to the fine-grid.  T exactly interpolates
    # B_fine[:, 0:blocksize(A)] = T B_coarse[:, 0:blocksize(A)].
    T, dummy = fit_candidates(AggOp, B[:, 0 : blocksize(A)])
    del dummy
    if A.symmetry == "nonsymmetric":
        TH, dummyH = fit_candidates(AggOp, BH[:, 0 : blocksize(A)])
        del dummyH

    # Create necessary root node matrices
    Cpt_params = (True, get_Cpt_params(A, Cnodes, AggOp, T))
    T = scale_T(T, Cpt_params[1]["P_I"], Cpt_params[1]["I_F"])
    if A.symmetry == "nonsymmetric":
        TH = scale_T(TH, Cpt_params[1]["P_I"], Cpt_params[1]["I_F"])

    # Set coarse grid near nullspace modes as injected fine grid near
    # null-space modes
    B = Cpt_params[1]["P_I"].T * levels[-1].B
    if A.symmetry == "nonsymmetric":
        BH = Cpt_params[1]["P_I"].T * levels[-1].BH

    # Smooth the tentative prolongator, so that it's accuracy is greatly
    # improved for algebraically smooth error.
    fn, kwargs = unpack_arg(smooth[len(levels) - 1])
    if fn == "energy":
        P = energy_prolongation_smoother(A, T, C, B, levels[-1].B, Cpt_params=Cpt_params, **kwargs)
    elif fn is None:
        P = T
    else:
        raise ValueError(
            "unrecognized prolongation smoother \
                          method %s"
            % str(fn)
        )

    # Compute the restriction matrix R, which interpolates from the fine-grid
    # to the coarse-grid.  If A is nonsymmetric, then R must be constructed
    # based on A.H.  Otherwise R = P.H or P.T.
    symmetry = A.symmetry
    if symmetry == "hermitian":
        R = P.H
    elif symmetry == "symmetric":
        R = P.T
    elif symmetry == "nonsymmetric":
        fn, kwargs = unpack_arg(smooth[len(levels) - 1])
        if fn == "energy":
            R = energy_prolongation_smoother(AH, TH, C, BH, levels[-1].BH, Cpt_params=Cpt_params, **kwargs)
            R = R.H
        elif fn is None:
            R = T.H
        else:
            raise ValueError(
                "unrecognized prolongation smoother \
                              method %s"
                % str(fn)
            )

    if keep:
        levels[-1].C = C  # strength of connection matrix
        levels[-1].AggOp = AggOp  # aggregation operator
        levels[-1].T = T  # tentative prolongator
        levels[-1].Fpts = Cpt_params[1]["Fpts"]  # Fpts
        levels[-1].P_I = Cpt_params[1]["P_I"]  # Injection operator
        levels[-1].I_F = Cpt_params[1]["I_F"]  # Identity on F-pts
        levels[-1].I_C = Cpt_params[1]["I_C"]  # Identity on C-pts

    levels[-1].P = P  # smoothed prolongator
    levels[-1].R = R  # restriction operator
    levels[-1].Cpts = Cpt_params[1]["Cpts"]  # Cpts (i.e., rootnodes)

    levels.append(multilevel_solver.level())
    A = R * A * P  # Galerkin operator
    A.symmetry = symmetry
    levels[-1].A = A
    levels[-1].B = B  # right near nullspace candidates

    if A.symmetry == "nonsymmetric":
        levels[-1].BH = BH  # left near nullspace candidates
Beispiel #3
0
def extend_hierarchy(levels,
                     strength,
                     aggregate,
                     smooth,
                     improve_candidates,
                     diagonal_dominance=False,
                     keep=True):
    """Service routine to implement the strength of connection, aggregation,
    tentative prolongation construction, and prolongation smoothing.  Called by
    smoothed_aggregation_solver.
    """
    def unpack_arg(v):
        if isinstance(v, tuple):
            return v[0], v[1]
        else:
            return v, {}

    A = levels[-1].A
    B = levels[-1].B
    if A.symmetry == "nonsymmetric":
        AH = A.H.asformat(A.format)
        BH = levels[-1].BH

    # Compute the strength-of-connection matrix C, where larger
    # C[i, j] denote stronger couplings between i and j.
    fn, kwargs = unpack_arg(strength[len(levels) - 1])
    if fn == 'symmetric':
        C = symmetric_strength_of_connection(A, **kwargs)
    elif fn == 'classical':
        C = classical_strength_of_connection(A, **kwargs)
    elif fn == 'distance':
        C = distance_strength_of_connection(A, **kwargs)
    elif (fn == 'ode') or (fn == 'evolution'):
        if 'B' in kwargs:
            C = evolution_strength_of_connection(A, **kwargs)
        else:
            C = evolution_strength_of_connection(A, B, **kwargs)
    elif fn == 'energy_based':
        C = energy_based_strength_of_connection(A, **kwargs)
    elif fn == 'predefined':
        C = kwargs['C'].tocsr()
    elif fn == 'algebraic_distance':
        C = algebraic_distance(A, **kwargs)
    elif fn == 'affinity':
        C = affinity_distance(A, **kwargs)
    elif fn is None:
        C = A.tocsr()
    else:
        raise ValueError('unrecognized strength of connection method: %s' %
                         str(fn))

    # Avoid coarsening diagonally dominant rows
    flag, kwargs = unpack_arg(diagonal_dominance)
    if flag:
        C = eliminate_diag_dom_nodes(A, C, **kwargs)

    # Compute the aggregation matrix AggOp (i.e., the nodal coarsening of A).
    # AggOp is a boolean matrix, where the sparsity pattern for the k-th column
    # denotes the fine-grid nodes agglomerated into k-th coarse-grid node.
    fn, kwargs = unpack_arg(aggregate[len(levels) - 1])
    if fn == 'standard':
        AggOp, Cnodes = standard_aggregation(C, **kwargs)
    elif fn == 'naive':
        AggOp, Cnodes = naive_aggregation(C, **kwargs)
    elif fn == 'lloyd':
        AggOp, Cnodes = lloyd_aggregation(C, **kwargs)
    elif fn == 'predefined':
        AggOp = kwargs['AggOp'].tocsr()
        Cnodes = kwargs['Cnodes']
    else:
        raise ValueError('unrecognized aggregation method %s' % str(fn))

    # Improve near nullspace candidates by relaxing on A B = 0
    fn, kwargs = unpack_arg(improve_candidates[len(levels) - 1])
    if fn is not None:
        b = np.zeros((A.shape[0], 1), dtype=A.dtype)
        B = relaxation_as_linear_operator((fn, kwargs), A, b) * B
        levels[-1].B = B
        if A.symmetry == "nonsymmetric":
            BH = relaxation_as_linear_operator((fn, kwargs), AH, b) * BH
            levels[-1].BH = BH

    # Compute the tentative prolongator, T, which is a tentative interpolation
    # matrix from the coarse-grid to the fine-grid.  T exactly interpolates
    # B_fine[:, 0:blocksize(A)] = T B_coarse[:, 0:blocksize(A)].
    T, dummy = fit_candidates(AggOp, B[:, 0:blocksize(A)])
    del dummy
    if A.symmetry == "nonsymmetric":
        TH, dummyH = fit_candidates(AggOp, BH[:, 0:blocksize(A)])
        del dummyH

    # Create necessary root node matrices
    Cpt_params = (True, get_Cpt_params(A, Cnodes, AggOp, T))
    T = scale_T(T, Cpt_params[1]['P_I'], Cpt_params[1]['I_F'])
    if A.symmetry == "nonsymmetric":
        TH = scale_T(TH, Cpt_params[1]['P_I'], Cpt_params[1]['I_F'])

    # Set coarse grid near nullspace modes as injected fine grid near
    # null-space modes
    B = Cpt_params[1]['P_I'].T * levels[-1].B
    if A.symmetry == "nonsymmetric":
        BH = Cpt_params[1]['P_I'].T * levels[-1].BH

    # Smooth the tentative prolongator, so that it's accuracy is greatly
    # improved for algebraically smooth error.
    fn, kwargs = unpack_arg(smooth[len(levels) - 1])
    if fn == 'energy':
        P = energy_prolongation_smoother(A,
                                         T,
                                         C,
                                         B,
                                         levels[-1].B,
                                         Cpt_params=Cpt_params,
                                         **kwargs)
    elif fn is None:
        P = T
    else:
        raise ValueError('unrecognized prolongation smoother \
                          method %s' % str(fn))

    # Compute the restriction matrix R, which interpolates from the fine-grid
    # to the coarse-grid.  If A is nonsymmetric, then R must be constructed
    # based on A.H.  Otherwise R = P.H or P.T.
    symmetry = A.symmetry
    if symmetry == 'hermitian':
        R = P.H
    elif symmetry == 'symmetric':
        R = P.T
    elif symmetry == 'nonsymmetric':
        fn, kwargs = unpack_arg(smooth[len(levels) - 1])
        if fn == 'energy':
            R = energy_prolongation_smoother(AH,
                                             TH,
                                             C,
                                             BH,
                                             levels[-1].BH,
                                             Cpt_params=Cpt_params,
                                             **kwargs)
            R = R.H
        elif fn is None:
            R = T.H
        else:
            raise ValueError('unrecognized prolongation smoother \
                              method %s' % str(fn))

    if keep:
        levels[-1].C = C  # strength of connection matrix
        levels[-1].AggOp = AggOp  # aggregation operator
        levels[-1].T = T  # tentative prolongator
        levels[-1].Fpts = Cpt_params[1]['Fpts']  # Fpts
        levels[-1].P_I = Cpt_params[1]['P_I']  # Injection operator
        levels[-1].I_F = Cpt_params[1]['I_F']  # Identity on F-pts
        levels[-1].I_C = Cpt_params[1]['I_C']  # Identity on C-pts

    levels[-1].P = P  # smoothed prolongator
    levels[-1].R = R  # restriction operator
    levels[-1].Cpts = Cpt_params[1]['Cpts']  # Cpts (i.e., rootnodes)

    levels.append(multilevel_solver.level())
    A = R * A * P  # Galerkin operator
    A.symmetry = symmetry
    levels[-1].A = A
    levels[-1].B = B  # right near nullspace candidates

    if A.symmetry == "nonsymmetric":
        levels[-1].BH = BH  # left near nullspace candidates
Beispiel #4
0
def extend_hierarchy(levels, strength, aggregate, smooth, improve_candidates,
                     diagonal_dominance=False, keep=True):
    """Service routine to implement the strength of connection, aggregation,
    tentative prolongation construction, and prolongation smoothing.  Called by
    smoothed_aggregation_solver.
    """

    A = levels[-1].A
    B = levels[-1].B
    if A.symmetry == "nonsymmetric":
        AH = A.H.asformat(A.format)
        BH = levels[-1].BH

    # Compute the strength-of-connection matrix C, where larger
    # C[i, j] denote stronger couplings between i and j.
    fn, kwargs = unpack_arg(strength[len(levels)-1])
    if fn == 'symmetric':
        C = symmetric_strength_of_connection(A, **kwargs)
    elif fn == 'classical':
        C = classical_strength_of_connection(A, **kwargs)
    elif fn == 'distance':
        C = distance_strength_of_connection(A, **kwargs)
    elif (fn == 'ode') or (fn == 'evolution'):
        if 'B' in kwargs:
            C = evolution_strength_of_connection(A, **kwargs)
        else:
            C = evolution_strength_of_connection(A, B, **kwargs)
    elif fn == 'energy_based':
        C = energy_based_strength_of_connection(A, **kwargs)
    elif fn == 'predefined':
        C = kwargs['C'].tocsr()
    elif fn == 'algebraic_distance':
        C = algebraic_distance(A, **kwargs)
    elif fn == 'affinity':
        C = affinity_distance(A, **kwargs)
    elif fn is None:
        C = A.tocsr()
    else:
        raise ValueError('unrecognized strength of connection method: %s' %
                         str(fn))
    
    levels[-1].complexity['strength'] = kwargs['cost'][0]

    # Avoid coarsening diagonally dominant rows
    flag, kwargs = unpack_arg(diagonal_dominance)
    if flag:
        C = eliminate_diag_dom_nodes(A, C, **kwargs)
        levels[-1].complexity['diag_dom'] = kwargs['cost'][0]

    # Compute the aggregation matrix AggOp (i.e., the nodal coarsening of A).
    # AggOp is a boolean matrix, where the sparsity pattern for the k-th column
    # denotes the fine-grid nodes agglomerated into k-th coarse-grid node.
    fn, kwargs = unpack_arg(aggregate[len(levels)-1])
    if fn == 'standard':
        AggOp, Cnodes = standard_aggregation(C, **kwargs)
    elif fn == 'naive':
        AggOp, Cnodes = naive_aggregation(C, **kwargs)
    elif fn == 'lloyd':
        AggOp, Cnodes = lloyd_aggregation(C, **kwargs)
    elif fn == 'predefined':
        AggOp = kwargs['AggOp'].tocsr()
        Cnodes = kwargs['Cnodes']
    else:
        raise ValueError('unrecognized aggregation method %s' % str(fn))
    
    levels[-1].complexity['aggregation'] = kwargs['cost'][0] * (float(C.nnz)/A.nnz)

    # Improve near nullspace candidates by relaxing on A B = 0
    temp_cost = [0.0]
    fn, kwargs = unpack_arg(improve_candidates[len(levels)-1],cost=False)
    if fn is not None:
        b = np.zeros((A.shape[0], 1), dtype=A.dtype)
        B = relaxation_as_linear_operator((fn, kwargs), A, b, temp_cost) * B
        levels[-1].B = B
        if A.symmetry == "nonsymmetric":
            BH = relaxation_as_linear_operator((fn, kwargs), AH, b, temp_cost) * BH
            levels[-1].BH = BH

    levels[-1].complexity['candidates'] = temp_cost[0] * B.shape[1]

    # Compute the tentative prolongator, T, which is a tentative interpolation
    # matrix from the coarse-grid to the fine-grid.  T exactly interpolates
    # B_fine[:, 0:blocksize(A)] = T B_coarse[:, 0:blocksize(A)].
    # Orthogonalization complexity ~ 2nk^2, k = blocksize(A).
    temp_cost=[0.0]
    T, dummy = fit_candidates(AggOp, B[:, 0:blocksize(A)], cost=temp_cost)
    del dummy
    if A.symmetry == "nonsymmetric":
        TH, dummyH = fit_candidates(AggOp, BH[:, 0:blocksize(A)], cost=temp_cost)
        del dummyH

    levels[-1].complexity['tentative'] = temp_cost[0]/A.nnz
    
    # Create necessary root node matrices
    Cpt_params = (True, get_Cpt_params(A, Cnodes, AggOp, T))
    T = scale_T(T, Cpt_params[1]['P_I'], Cpt_params[1]['I_F'])
    levels[-1].complexity['tentative'] += T.nnz / float(A.nnz)
    if A.symmetry == "nonsymmetric":
        TH = scale_T(TH, Cpt_params[1]['P_I'], Cpt_params[1]['I_F'])
        levels[-1].complexity['tentative'] += TH.nnz / float(A.nnz)

    # Set coarse grid near nullspace modes as injected fine grid near
    # null-space modes
    B = Cpt_params[1]['P_I'].T*levels[-1].B
    if A.symmetry == "nonsymmetric":
        BH = Cpt_params[1]['P_I'].T*levels[-1].BH

    # Smooth the tentative prolongator, so that it's accuracy is greatly
    # improved for algebraically smooth error.
    fn, kwargs = unpack_arg(smooth[len(levels)-1])
    if fn == 'energy':
        P = energy_prolongation_smoother(A, T, C, B, levels[-1].B,
                                         Cpt_params=Cpt_params, **kwargs)
    elif fn is None:
        P = T
    else:
        raise ValueError('unrecognized prolongation smoother \
                          method %s' % str(fn))

    levels[-1].complexity['smooth_P'] = kwargs['cost'][0]

    # Compute the restriction matrix R, which interpolates from the fine-grid
    # to the coarse-grid.  If A is nonsymmetric, then R must be constructed
    # based on A.H.  Otherwise R = P.H or P.T.
    symmetry = A.symmetry
    if symmetry == 'hermitian':
        R = P.H
    elif symmetry == 'symmetric':
        R = P.T
    elif symmetry == 'nonsymmetric':
        fn, kwargs = unpack_arg(smooth[len(levels)-1])
        if fn == 'energy':
            R = energy_prolongation_smoother(AH, TH, C, BH, levels[-1].BH,
                                             Cpt_params=Cpt_params, **kwargs)
            R = R.H
            levels[-1].complexity['smooth_R'] = kwargs['cost'][0]
        elif fn is None:
            R = T.H
        else:
            raise ValueError('unrecognized prolongation smoother \
                              method %s' % str(fn))

    if keep:
        levels[-1].C = C                        # strength of connection matrix
        levels[-1].AggOp = AggOp                # aggregation operator
        levels[-1].T = T                        # tentative prolongator
        levels[-1].Fpts = Cpt_params[1]['Fpts'] # Fpts
        levels[-1].P_I = Cpt_params[1]['P_I']   # Injection operator
        levels[-1].I_F = Cpt_params[1]['I_F']   # Identity on F-pts
        levels[-1].I_C = Cpt_params[1]['I_C']   # Identity on C-pts

    levels[-1].P = P                            # smoothed prolongator
    levels[-1].R = R                            # restriction operator
    levels[-1].Cpts = Cpt_params[1]['Cpts']     # Cpts (i.e., rootnodes)

    # Form coarse grid operator, get complexity
    levels[-1].complexity['RAP'] = mat_mat_complexity(R,A) / float(A.nnz)
    RA = R * A
    levels[-1].complexity['RAP'] += mat_mat_complexity(RA,P) / float(A.nnz)
    A = RA * P      # Galerkin operator, Ac = RAP
    A.symmetry = symmetry

    levels.append(multilevel_solver.level())
    levels[-1].A = A
    levels[-1].B = B                          # right near nullspace candidates

    if A.symmetry == "nonsymmetric":
        levels[-1].BH = BH                   # left near nullspace candidates