def build_poisson(n, epsilon, theta, randomize):
    data = {}
    h = 1. / float(n + 1)

    print "Assembling diffusion using Q1 on a regular mesh with epsilon = " + \
          str(epsilon) + " and theta = " + str(theta) + " ..."
    stencil = diffusion_stencil_2d(type='FE', epsilon=epsilon, theta=theta)
    A = stencil_grid(stencil, (n, n), format='csr')
    X, Y = meshgrid(linspace(h, 1.0 - h, n), linspace(h, 1.0 - h, n))
    data['X'] = X
    data['Y'] = Y

    if randomize:
        print "Random diagonal scaling..."
        D = my_rand(A.shape[0], 1)
        D[D < 0.] -= 1e-3
        D[D >= 0.] += 1e-3
        data['D'] = D
        D_inv = 1. / D
        data['D_inv'] = D_inv
        A = scale_rows(A, D)
        A = scale_columns(A, D)

    if symmetric_scale:
        symmetric_rescaling(A, copy=False)

    print "Ratio of largest to smallest (in magnitude) diagonal element in A: %1.3e"% \
          (abs(A.diagonal()).max() / abs(A.diagonal()).min())
    data['A'] = A
    print 'Generate initial guess (which is random)...'
    data['x0'] = my_rand(data['A'].shape[0], 1)
    print 'Generate rhs (which is zero)...'
    data['b'] = numpy.zeros((data['A'].shape[0], 1))

    return data
Beispiel #2
0
def evolution_strength_of_connection(A,
                                     B=None,
                                     epsilon=4.0,
                                     k=2,
                                     proj_type="l2",
                                     weighting='diagonal',
                                     symmetrize_measure=True,
                                     cost=[0]):
    """
    Construct strength of connection matrix using an Evolution-based measure

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix
    B : {string, array}
        If B=None, then the near nullspace vector used is all ones.  If B is
        an (NxK) array, then B is taken to be the near nullspace vectors.
    epsilon : scalar
        Drop tolerance
    k : integer
        ODE num time steps, step size is assumed to be 1/rho(DinvA)
    proj_type : {'l2','D_A'}
        Define norm for constrained min prob, i.e. define projection
    weighting : {string}
        'block', 'diagonal' or 'local' construction of the D-inverse 
        used to precondition A before "evolving" delta-functions.  The
        local option is the cheapest.

    Returns
    -------
    Atilde : {csr_matrix}
        Sparse matrix of strength values

    References
    ----------
    .. [1] Olson, L. N., Schroder, J., Tuminaro, R. S.,
       "A New Perspective on Strength Measures in Algebraic Multigrid",
       submitted, June, 2008.

    Examples
    --------
    >>> import numpy as np
    >>> from pyamg.gallery import stencil_grid
    >>> from pyamg.strength import evolution_strength_of_connection
    >>> n=3
    >>> stencil =  np.array([[-1.0,-1.0,-1.0],
    ...                        [-1.0, 8.0,-1.0],
    ...                        [-1.0,-1.0,-1.0]])
    >>> A = stencil_grid(stencil, (n,n), format='csr')
    >>> S = evolution_strength_of_connection(A,  np.ones((A.shape[0],1)))
    """
    # local imports for evolution_strength_of_connection
    from pyamg.util.utils import scale_rows, get_block_diag, scale_columns
    from pyamg.util.linalg import approximate_spectral_radius

    # ====================================================================
    # Check inputs
    if epsilon < 1.0:
        raise ValueError("expected epsilon > 1.0")
    if k <= 0:
        raise ValueError("number of time steps must be > 0")
    if proj_type not in ['l2', 'D_A']:
        raise ValueError("proj_type must be 'l2' or 'D_A'")
    if (not sparse.isspmatrix_csr(A)) and (not sparse.isspmatrix_bsr(A)):
        raise TypeError("expected csr_matrix or bsr_matrix")

    # ====================================================================
    # Format A and B correctly.
    # B must be in mat format, this isn't a deep copy
    if B is None:
        Bmat = np.mat(np.ones((A.shape[0], 1), dtype=A.dtype))
    else:
        Bmat = np.mat(B)

    # Is matrix A CSR?
    if (not sparse.isspmatrix_csr(A)):
        numPDEs = A.blocksize[0]
        csrflag = False
    else:
        numPDEs = 1
        csrflag = True

    # Pre-process A.  We need A in CSR, to be devoid of explicit 0's, have
    # sorted indices and be scaled by D-inverse
    if weighting == 'block':
        Dinv = get_block_diag(A, blocksize=numPDEs, inv_flag=True)
        Dinv = sparse.bsr_matrix(
            (Dinv, np.arange(Dinv.shape[0]), np.arange(Dinv.shape[0] + 1)),
            shape=A.shape)
        Dinv_A = (Dinv * A).tocsr()
        cost[0] += 1
    elif weighting == 'diagonal':
        D = A.diagonal()
        Dinv = get_diagonal(A, norm_eq=False, inv=True)
        Dinv[D == 0] = 1.0
        Dinv_A = scale_rows(A, Dinv, copy=True)
        cost[0] += 1
    elif weighting == 'local':
        D = np.abs(A) * np.ones((A.shape[0], 1), dtype=A.dtype)
        Dinv = np.zeros_like(D)
        Dinv[D != 0] = 1.0 / np.abs(D[D != 0])
        Dinv[D == 0] = 1.0
        Dinv_A = scale_rows(A, Dinv, copy=True)
        cost[0] += 1
    else:
        raise ValueError('Unrecognized weighting for Evolution measure')

    A = A.tocsr()
    A.eliminate_zeros()
    A.sort_indices()

    # Handle preliminaries for the algorithm
    dimen = A.shape[1]
    NullDim = Bmat.shape[1]

    if weighting == 'diagonal' or weighting == 'block':
        # Get spectral radius of Dinv*A, scales the time step size for the ODE
        rho_DinvA = approximate_spectral_radius(Dinv_A)
        cost[0] += 15  # 15 lanczos iterations to approximate spectral radius
    else:
        # Using local weighting, no need for spectral radius
        rho_DinvA = 1.0

    # Calculate D_A for later use in the minimization problem
    if proj_type == "D_A":
        D = A.diagonal()
        D_A = sparse.spdiags([D], [0], dimen, dimen, format='csr')
    else:
        D_A = sparse.eye(dimen, dimen, format="csr", dtype=A.dtype)

    # Calculate (I - delta_t Dinv A)^k
    # We transpose the product, so that we can efficiently access
    # the columns in CSR format.  We want the columns (not rows) because
    # strength is based on the columns of (I - delta_t Dinv A)^k, i.e.,
    # relaxed delta functions

    # Calculate the number of time steps that can be done by squaring, and
    # the number of time steps that must be done incrementally
    nsquare = int(np.log2(k))
    ninc = k - 2**nsquare

    # Calculate one time step
    I = sparse.eye(dimen, dimen, format="csr", dtype=A.dtype)
    Atilde = (I - (1.0 / rho_DinvA) * Dinv_A)
    Atilde = Atilde.T.tocsr()
    cost[0] += 1

    # Construct a sparsity mask for Atilde that will restrict Atilde^T to the
    # nonzero pattern of A, with the added constraint that row i of Atilde^T
    # retains only the nonzeros that are also in the same PDE as i.
    mask = A.copy()

    # Restrict to same PDE
    if numPDEs > 1:
        row_length = np.diff(mask.indptr)
        my_pde = np.mod(np.arange(dimen), numPDEs)
        my_pde = np.repeat(my_pde, row_length)
        mask.data[np.mod(mask.indices, numPDEs) != my_pde] = 0.0
        del row_length, my_pde
        mask.eliminate_zeros()

    # If the total number of time steps is a power of two, then there is
    # a very efficient computational short-cut.  Otherwise, we support
    # other numbers of time steps, through an inefficient algorithm.
    if ninc > 0:
        warn("The most efficient time stepping for the Evolution Strength\
             Method is done in powers of two.\nYou have chosen " + str(k) +
             " time steps.")

        JacobiStep = csr_matrix(Atilde, copy=True)
        # Calculate (Atilde^nsquare)^T = (Atilde^T)^nsquare
        for i in range(nsquare):
            cost[0] += mat_mat_complexity(Atilde, Atilde)
            Atilde = Atilde * Atilde

        for i in range(ninc):
            cost[0] += mat_mat_complexity(Atilde, JacobiStep)
            Atilde = Atilde * JacobiStep

        del JacobiStep

        # Apply mask to Atilde, zeros in mask have already been eliminated at
        # start of routine.
        mask.data[:] = 1.0
        Atilde = Atilde.multiply(mask)
        Atilde.eliminate_zeros()
        Atilde.sort_indices()
        cost[0] += Atilde.nnz / float(A.nnz)

    elif nsquare == 0:
        if numPDEs > 1:
            # Apply mask to Atilde, zeros in mask have already been eliminated
            # at start of routine.
            mask.data[:] = 1.0
            Atilde = Atilde.multiply(mask)
            Atilde.eliminate_zeros()
            Atilde.sort_indices()

    else:
        # Use computational short-cut for case (ninc == 0) and (nsquare > 0)
        # Calculate Atilde^k only at the sparsity pattern of mask.
        for i in range(nsquare - 1):
            cost[0] += mat_mat_complexity(Atilde, Atilde)
            Atilde = Atilde * Atilde

        # Call incomplete mat-mat mult
        AtildeCSC = Atilde.tocsc()
        AtildeCSC.sort_indices()
        mask.sort_indices()
        Atilde.sort_indices()
        amg_core.incomplete_mat_mult_csr(Atilde.indptr, Atilde.indices,
                                         Atilde.data, AtildeCSC.indptr,
                                         AtildeCSC.indices, AtildeCSC.data,
                                         mask.indptr, mask.indices, mask.data,
                                         dimen)
        cost[0] += mat_mat_complexity(Atilde, mask, incomplete=True) / float(
            A.nnz)

        del AtildeCSC, Atilde
        Atilde = mask
        Atilde.eliminate_zeros()
        Atilde.sort_indices()

    del Dinv, Dinv_A, mask

    # Calculate strength based on constrained min problem of
    # min( z - B*x ), such that
    # (B*x)|_i = z|_i, i.e. they are equal at point i
    # z = (I - (t/k) Dinv A)^k delta_i
    #
    # Strength is defined as the relative point-wise approx. error between
    # B*x and z.  We don't use the full z in this problem, only that part of
    # z that is in the sparsity pattern of A.
    #
    # Can use either the D-norm, and inner product, or l2-norm and inner-prod
    # to solve the constrained min problem.  Using D gives scale invariance.
    #
    # This is a quadratic minimization problem with a linear constraint, so
    # we can build a linear system and solve it to find the critical point,
    # i.e. minimum.
    #
    # We exploit a known shortcut for the case of NullDim = 1.  The shortcut is
    # mathematically equivalent to the longer constrained min. problem

    if NullDim == 1:
        # Use shortcut to solve constrained min problem if B is only a vector
        # Strength(i,j) = | 1 - (z(i)/b(j))/(z(j)/b(i)) |
        # These ratios can be calculated by diagonal row and column scalings

        # Create necessary vectors for scaling Atilde
        #   Its not clear what to do where B == 0.  This is an
        #   an easy programming solution, that may make sense.
        Bmat_forscaling = np.ravel(Bmat)
        Bmat_forscaling[Bmat_forscaling == 0] = 1.0
        DAtilde = Atilde.diagonal()
        DAtildeDivB = np.ravel(DAtilde) / Bmat_forscaling
        cost[0] += Atilde.shape[0] / float(A.nnz)

        # Calculate best approximation, z_tilde, in span(B)
        #   Importantly, scale_rows and scale_columns leave zero entries
        #   in the matrix.  For previous implementations this was useful
        #   because we assume data and Atilde.data are the same length below
        data = Atilde.data.copy()
        Atilde.data[:] = 1.0
        Atilde = scale_rows(Atilde, DAtildeDivB)
        Atilde = scale_columns(Atilde, np.ravel(Bmat_forscaling))
        cost[0] += 2.0 * Atilde.nnz / float(A.nnz)

        # If angle in the complex plane between z and z_tilde is
        # greater than 90 degrees, then weak.  We can just look at the
        # dot product to determine if angle is greater than 90 degrees.
        angle = np.real(Atilde.data) * np.real(data) +\
            np.imag(Atilde.data) * np.imag(data)
        angle = angle < 0.0
        angle = np.array(angle, dtype=bool)
        cost[0] += Atilde.nnz / float(A.nnz)
        if Atilde.dtype is 'complex':
            cost[0] += Atilde.nnz / float(A.nnz)

        # Calculate Approximation ratio
        Atilde.data = Atilde.data / data
        cost[0] += Atilde.nnz / float(A.nnz)

        # If approximation ratio is less than tol, then weak connection
        weak_ratio = (np.abs(Atilde.data) < 1e-4)

        # Calculate Approximation error
        Atilde.data = abs(1.0 - Atilde.data)
        cost[0] += Atilde.nnz / float(A.nnz)

        # Set small ratios and large angles to weak
        Atilde.data[weak_ratio] = 0.0
        Atilde.data[angle] = 0.0

        # Set near perfect connections to 1e-4
        Atilde.eliminate_zeros()
        Atilde.data[Atilde.data < np.sqrt(np.finfo(float).eps)] = 1e-4

        del data, weak_ratio, angle

    else:
        # For use in computing local B_i^H*B, precompute the element-wise
        # multiply of each column of B with each other column.  We also scale
        # by 2.0 to account for BDB's eventual use in a constrained
        # minimization problem
        BDBCols = int(np.sum(np.arange(NullDim + 1)))
        BDB = np.zeros((dimen, BDBCols), dtype=A.dtype)
        counter = 0
        for i in range(NullDim):
            for j in range(i, NullDim):
                BDB[:, counter] = 2.0 *\
                    (np.conjugate(np.ravel(np.asarray(B[:, i]))) *
                        np.ravel(np.asarray(D_A * B[:, j])))
                counter = counter + 1
                cost[0] += B.shape[0] / float(A.nnz)

        # Choose tolerance for dropping "numerically zero" values later
        t = Atilde.dtype.char
        eps = np.finfo(np.float).eps
        feps = np.finfo(np.single).eps
        geps = np.finfo(np.longfloat).eps
        _array_precision = {'f': 0, 'd': 1, 'g': 2, 'F': 0, 'D': 1, 'G': 2}
        tol = {0: feps * 1e3, 1: eps * 1e6, 2: geps * 1e6}[_array_precision[t]]

        # Use constrained min problem to define strength.
        # This function is doing similar to NullDim=1 with more bad guys.
        # Complexity accounts for computing the block inverse, and
        #   hat{z_i} = B_i*x, hat{z_i} .* hat{z_i},
        #   hat{z_i} = hat{z_i} / z_i, and abs(1.0 - hat{z_i}).
        cost[0] += (Atilde.nnz * (3 + NullDim) +
                    (NullDim**3) * dimen) / float(A.nnz)
        amg_core.evolution_strength_helper(
            Atilde.data, Atilde.indptr, Atilde.indices, Atilde.shape[0],
            np.ravel(np.asarray(B)),
            np.ravel(np.asarray((D_A * np.conjugate(B)).T)),
            np.ravel(np.asarray(BDB)), BDBCols, NullDim, tol)

        Atilde.eliminate_zeros()

    # All of the strength values are real by this point, so ditch the complex
    # part
    Atilde.data = np.array(np.real(Atilde.data), dtype=float)

    # Apply drop tolerance
    if epsilon != np.inf:
        cost[0] += Atilde.nnz / float(A.nnz)
        amg_core.apply_distance_filter(dimen, epsilon, Atilde.indptr,
                                       Atilde.indices, Atilde.data)
        Atilde.eliminate_zeros()

    # Set diagonal to 1.0, as each point is strongly connected to itself.
    I = sparse.eye(dimen, dimen, format="csr")
    I.data -= Atilde.diagonal()
    Atilde = Atilde + I
    cost[0] += Atilde.shape[0] / float(A.nnz)

    # If converted BSR to CSR, convert back and return amalgamated matrix,
    #   i.e. the sparsity structure of the blocks of Atilde
    if not csrflag:
        Atilde = Atilde.tobsr(blocksize=(numPDEs, numPDEs))

        n_blocks = Atilde.indices.shape[0]
        blocksize = Atilde.blocksize[0] * Atilde.blocksize[1]
        CSRdata = np.zeros((n_blocks, ))
        amg_core.min_blocks(n_blocks, blocksize,
                            np.ravel(np.asarray(Atilde.data)), CSRdata)
        # Atilde = sparse.csr_matrix((data, row, col), shape=(*,*))
        Atilde = sparse.csr_matrix((CSRdata, Atilde.indices, Atilde.indptr),
                                   shape=(int(Atilde.shape[0] / numPDEs),
                                          int(Atilde.shape[1] / numPDEs)))

    # Standardized strength values require small values be weak and large
    # values be strong.  So, we invert the algebraic distances computed here
    Atilde.data = 1.0 / Atilde.data
    cost[0] += Atilde.nnz / float(A.nnz)

    # Scale C by the largest magnitude entry in each row
    Atilde = scale_rows_by_largest_entry(Atilde)
    cost[0] += Atilde.nnz / float(A.nnz)

    # Symmetrize
    if symmetrize_measure:
        Atilde = 0.5 * (Atilde + Atilde.T)
        cost[0] += Atilde.nnz / float(A.nnz)

    return Atilde
Beispiel #3
0
def evolution_strength_of_connection(A, B='ones', epsilon=4.0, k=2,
                                     proj_type="l2", block_flag=False,
                                     symmetrize_measure=True):
    """
    Construct strength of connection matrix using an Evolution-based measure

    Parameters
    ----------
    A : {csr_matrix, bsr_matrix}
        Sparse NxN matrix
    B : {string, array}
        If B='ones', then the near nullspace vector used is all ones.  If B is
        an (NxK) array, then B is taken to be the near nullspace vectors.
    epsilon : scalar
        Drop tolerance
    k : integer
        ODE num time steps, step size is assumed to be 1/rho(DinvA)
    proj_type : {'l2','D_A'}
        Define norm for constrained min prob, i.e. define projection
    block_flag : {boolean}
        If True, use a block D inverse as preconditioner for A during
        weighted-Jacobi

    Returns
    -------
    Atilde : {csr_matrix}
        Sparse matrix of strength values

    References
    ----------
    .. [1] Olson, L. N., Schroder, J., Tuminaro, R. S.,
       "A New Perspective on Strength Measures in Algebraic Multigrid",
       submitted, June, 2008.

    Examples
    --------
    >>> import numpy as np
    >>> from pyamg.gallery import stencil_grid
    >>> from pyamg.strength import evolution_strength_of_connection
    >>> n=3
    >>> stencil =  np.array([[-1.0,-1.0,-1.0],
    ...                        [-1.0, 8.0,-1.0],
    ...                        [-1.0,-1.0,-1.0]])
    >>> A = stencil_grid(stencil, (n,n), format='csr')
    >>> S = evolution_strength_of_connection(A,  np.ones((A.shape[0],1)))
    """
    # local imports for evolution_strength_of_connection
    from pyamg.util.utils import scale_rows, get_block_diag, scale_columns
    from pyamg.util.linalg import approximate_spectral_radius

    # ====================================================================
    # Check inputs
    if epsilon < 1.0:
        raise ValueError("expected epsilon > 1.0")
    if k <= 0:
        raise ValueError("number of time steps must be > 0")
    if proj_type not in ['l2', 'D_A']:
        raise ValueError("proj_type must be 'l2' or 'D_A'")
    if (not sparse.isspmatrix_csr(A)) and (not sparse.isspmatrix_bsr(A)):
        raise TypeError("expected csr_matrix or bsr_matrix")

    # ====================================================================
    # Format A and B correctly.
    # B must be in mat format, this isn't a deep copy
    if B == 'ones':
        Bmat = np.mat(np.ones((A.shape[0], 1), dtype=A.dtype))
    else:
        Bmat = np.mat(B)

    # Pre-process A.  We need A in CSR, to be devoid of explicit 0's and have
    # sorted indices
    if (not sparse.isspmatrix_csr(A)):
        csrflag = False
        numPDEs = A.blocksize[0]
        D = A.diagonal()
        # Calculate Dinv*A
        if block_flag:
            Dinv = get_block_diag(A, blocksize=numPDEs, inv_flag=True)
            Dinv = sparse.bsr_matrix((Dinv, np.arange(Dinv.shape[0]),
                                     np.arange(Dinv.shape[0] + 1)),
                                     shape=A.shape)
            Dinv_A = (Dinv * A).tocsr()
        else:
            Dinv = np.zeros_like(D)
            mask = (D != 0.0)
            Dinv[mask] = 1.0 / D[mask]
            Dinv[D == 0] = 1.0
            Dinv_A = scale_rows(A, Dinv, copy=True)
        A = A.tocsr()
    else:
        csrflag = True
        numPDEs = 1
        D = A.diagonal()
        Dinv = np.zeros_like(D)
        mask = (D != 0.0)
        Dinv[mask] = 1.0 / D[mask]
        Dinv[D == 0] = 1.0
        Dinv_A = scale_rows(A, Dinv, copy=True)

    A.eliminate_zeros()
    A.sort_indices()

    # Handle preliminaries for the algorithm
    dimen = A.shape[1]
    NullDim = Bmat.shape[1]

    # Get spectral radius of Dinv*A, this will be used to scale the time step
    # size for the ODE
    rho_DinvA = approximate_spectral_radius(Dinv_A)

    # Calculate D_A for later use in the minimization problem
    if proj_type == "D_A":
        D_A = sparse.spdiags([D], [0], dimen, dimen, format='csr')
    else:
        D_A = sparse.eye(dimen, dimen, format="csr", dtype=A.dtype)

    # Calculate (I - delta_t Dinv A)^k
    #      In order to later access columns, we calculate the transpose in
    #      CSR format so that columns will be accessed efficiently
    # Calculate the number of time steps that can be done by squaring, and
    # the number of time steps that must be done incrementally
    nsquare = int(np.log2(k))
    ninc = k - 2**nsquare

    # Calculate one time step
    I = sparse.eye(dimen, dimen, format="csr", dtype=A.dtype)
    Atilde = (I - (1.0/rho_DinvA)*Dinv_A)
    Atilde = Atilde.T.tocsr()

    # Construct a sparsity mask for Atilde that will restrict Atilde^T to the
    # nonzero pattern of A, with the added constraint that row i of Atilde^T
    # retains only the nonzeros that are also in the same PDE as i.
    mask = A.copy()

    # Restrict to same PDE
    if numPDEs > 1:
        row_length = np.diff(mask.indptr)
        my_pde = np.mod(range(dimen), numPDEs)
        my_pde = np.repeat(my_pde, row_length)
        mask.data[np.mod(mask.indices, numPDEs) != my_pde] = 0.0
        del row_length, my_pde
        mask.eliminate_zeros()

    # If the total number of time steps is a power of two, then there is
    # a very efficient computational short-cut.  Otherwise, we support
    # other numbers of time steps, through an inefficient algorithm.
    if ninc > 0:
        warn("The most efficient time stepping for the Evolution Strength\
             Method is done in powers of two.\nYou have chosen " + str(k) +
             " time steps.")

        # Calculate (Atilde^nsquare)^T = (Atilde^T)^nsquare
        for i in range(nsquare):
            Atilde = Atilde*Atilde

        JacobiStep = (I - (1.0/rho_DinvA)*Dinv_A).T.tocsr()
        for i in range(ninc):
            Atilde = Atilde*JacobiStep
        del JacobiStep

        # Apply mask to Atilde, zeros in mask have already been eliminated at
        # start of routine.
        mask.data[:] = 1.0
        Atilde = Atilde.multiply(mask)
        Atilde.eliminate_zeros()
        Atilde.sort_indices()

    elif nsquare == 0:
        if numPDEs > 1:
            # Apply mask to Atilde, zeros in mask have already been eliminated
            # at start of routine.
            mask.data[:] = 1.0
            Atilde = Atilde.multiply(mask)
            Atilde.eliminate_zeros()
            Atilde.sort_indices()

    else:
        # Use computational short-cut for case (ninc == 0) and (nsquare > 0)
        # Calculate Atilde^k only at the sparsity pattern of mask.
        for i in range(nsquare-1):
            Atilde = Atilde*Atilde

        # Call incomplete mat-mat mult
        AtildeCSC = Atilde.tocsc()
        AtildeCSC.sort_indices()
        mask.sort_indices()
        Atilde.sort_indices()
        amg_core.incomplete_mat_mult_csr(Atilde.indptr, Atilde.indices,
                                         Atilde.data, AtildeCSC.indptr,
                                         AtildeCSC.indices, AtildeCSC.data,
                                         mask.indptr, mask.indices, mask.data,
                                         dimen)

        del AtildeCSC, Atilde
        Atilde = mask
        Atilde.eliminate_zeros()
        Atilde.sort_indices()

    del Dinv, Dinv_A, mask

    # Calculate strength based on constrained min problem of
    # min( z - B*x ), such that
    # (B*x)|_i = z|_i, i.e. they are equal at point i
    # z = (I - (t/k) Dinv A)^k delta_i
    #
    # Strength is defined as the relative point-wise approx. error between
    # B*x and z.  We don't use the full z in this problem, only that part of
    # z that is in the sparsity pattern of A.
    #
    # Can use either the D-norm, and inner product, or l2-norm and inner-prod
    # to solve the constrained min problem.  Using D gives scale invariance.
    #
    # This is a quadratic minimization problem with a linear constraint, so
    # we can build a linear system and solve it to find the critical point,
    # i.e. minimum.
    #
    # We exploit a known shortcut for the case of NullDim = 1.  The shortcut is
    # mathematically equivalent to the longer constrained min. problem

    if NullDim == 1:
        # Use shortcut to solve constrained min problem if B is only a vector
        # Strength(i,j) = | 1 - (z(i)/b(j))/(z(j)/b(i)) |
        # These ratios can be calculated by diagonal row and column scalings

        # Create necessary vectors for scaling Atilde
        #   Its not clear what to do where B == 0.  This is an
        #   an easy programming solution, that may make sense.
        Bmat_forscaling = np.ravel(Bmat)
        Bmat_forscaling[Bmat_forscaling == 0] = 1.0
        DAtilde = Atilde.diagonal()
        DAtildeDivB = np.ravel(DAtilde) / Bmat_forscaling

        # Calculate best approximation, z_tilde, in span(B)
        #   Importantly, scale_rows and scale_columns leave zero entries
        #   in the matrix.  For previous implementations this was useful
        #   because we assume data and Atilde.data are the same length below
        data = Atilde.data.copy()
        Atilde.data[:] = 1.0
        Atilde = scale_rows(Atilde, DAtildeDivB)
        Atilde = scale_columns(Atilde, np.ravel(Bmat_forscaling))

        # If angle in the complex plane between z and z_tilde is
        # greater than 90 degrees, then weak.  We can just look at the
        # dot product to determine if angle is greater than 90 degrees.
        angle = np.real(Atilde.data) * np.real(data) +\
            np.imag(Atilde.data) * np.imag(data)
        angle = angle < 0.0
        angle = np.array(angle, dtype=bool)

        # Calculate Approximation ratio
        Atilde.data = Atilde.data/data

        # If approximation ratio is less than tol, then weak connection
        weak_ratio = (np.abs(Atilde.data) < 1e-4)

        # Calculate Approximation error
        Atilde.data = abs(1.0 - Atilde.data)

        # Set small ratios and large angles to weak
        Atilde.data[weak_ratio] = 0.0
        Atilde.data[angle] = 0.0

        # Set near perfect connections to 1e-4
        Atilde.eliminate_zeros()
        Atilde.data[Atilde.data < np.sqrt(np.finfo(float).eps)] = 1e-4

        del data, weak_ratio, angle

    else:
        # For use in computing local B_i^H*B, precompute the element-wise
        # multiply of each column of B with each other column.  We also scale
        # by 2.0 to account for BDB's eventual use in a constrained
        # minimization problem
        BDBCols = int(np.sum(range(NullDim + 1)))
        BDB = np.zeros((dimen, BDBCols), dtype=A.dtype)
        counter = 0
        for i in range(NullDim):
            for j in range(i, NullDim):
                BDB[:, counter] = 2.0 *\
                    (np.conjugate(np.ravel(np.asarray(B[:, i]))) *
                        np.ravel(np.asarray(D_A * B[:, j])))
                counter = counter + 1

        # Choose tolerance for dropping "numerically zero" values later
        t = Atilde.dtype.char
        eps = np.finfo(np.float).eps
        feps = np.finfo(np.single).eps
        geps = np.finfo(np.longfloat).eps
        _array_precision = {'f': 0, 'd': 1, 'g': 2, 'F': 0, 'D': 1, 'G': 2}
        tol = {0: feps*1e3, 1: eps*1e6, 2: geps*1e6}[_array_precision[t]]

        # Use constrained min problem to define strength
        amg_core.evolution_strength_helper(Atilde.data,
                                           Atilde.indptr,
                                           Atilde.indices,
                                           Atilde.shape[0],
                                           np.ravel(np.asarray(B)),
                                           np.ravel(np.asarray(
                                               (D_A * np.conjugate(B)).T)),
                                           np.ravel(np.asarray(BDB)),
                                           BDBCols, NullDim, tol)

        Atilde.eliminate_zeros()

    # All of the strength values are real by this point, so ditch the complex
    # part
    Atilde.data = np.array(np.real(Atilde.data), dtype=float)

    # Apply drop tolerance
    if symmetrize_measure:
        Atilde = 0.5*(Atilde + Atilde.T)

    if epsilon != np.inf:
        amg_core.apply_distance_filter(dimen, epsilon, Atilde.indptr,
                                       Atilde.indices, Atilde.data)
        Atilde.eliminate_zeros()

    # Set diagonal to 1.0, as each point is strongly connected to itself.
    I = sparse.eye(dimen, dimen, format="csr")
    I.data -= Atilde.diagonal()
    Atilde = Atilde + I

    # If converted BSR to CSR, convert back and return amalgamated matrix,
    #   i.e. the sparsity structure of the blocks of Atilde
    if not csrflag:
        Atilde = Atilde.tobsr(blocksize=(numPDEs, numPDEs))

        n_blocks = Atilde.indices.shape[0]
        blocksize = Atilde.blocksize[0]*Atilde.blocksize[1]
        CSRdata = np.zeros((n_blocks,))
        amg_core.min_blocks(n_blocks, blocksize,
                            np.ravel(np.asarray(Atilde.data)), CSRdata)
        # Atilde = sparse.csr_matrix((data, row, col), shape=(*,*))
        Atilde = sparse.csr_matrix((CSRdata, Atilde.indices, Atilde.indptr),
                                   shape=(Atilde.shape[0] / numPDEs,
                                          Atilde.shape[1] / numPDEs))

    # Standardized strength values require small values be weak and large
    # values be strong.  So, we invert the algebraic distances computed here
    Atilde.data = 1.0/Atilde.data

    # Scale C by the largest magnitude entry in each row
    Atilde = scale_rows_by_largest_entry(Atilde)

    return Atilde