def test_approximate_gaussian_process(self):
        from sklearn.gaussian_process.kernels import Matern
        num_vars = 1
        univariate_variables = [stats.uniform(-1, 2)] * num_vars
        variable = pya.IndependentMultivariateRandomVariable(
            univariate_variables)
        num_samples = 100
        train_samples = pya.generate_independent_random_samples(
            variable, num_samples)

        # Generate random function
        nu = np.inf  # 2.5
        kernel = Matern(0.5, nu=nu)
        X = np.linspace(-1, 1, 1000)[np.newaxis, :]
        alpha = np.random.normal(0, 1, X.shape[1])
        train_vals = kernel(train_samples.T, X.T).dot(alpha)[:, np.newaxis]

        gp = approximate(train_samples, train_vals, "gaussian_process", {
            "nu": nu,
            "noise_level": 1e-8
        }).approx

        error = np.linalg.norm(gp(X)[:, 0]-kernel(X.T, X.T).dot(alpha)) /\
            np.sqrt(X.shape[1])
        assert error < 1e-5
    def help_cross_validate_pce_degree(self, solver_type, solver_options):
        print(solver_type, solver_options)
        num_vars = 2
        univariate_variables = [stats.uniform(-1, 2)] * num_vars
        variable = pya.IndependentMultivariateRandomVariable(
            univariate_variables)
        var_trans = pya.AffineRandomVariableTransformation(variable)
        poly = pya.PolynomialChaosExpansion()
        poly_opts = pya.define_poly_options_from_variable_transformation(
            var_trans)
        poly.configure(poly_opts)

        degree = 3
        poly.set_indices(pya.compute_hyperbolic_indices(num_vars, degree, 1.0))
        # factor of 2 does not pass test but 2.2 does
        num_samples = int(poly.num_terms() * 2.2)
        coef = np.random.normal(0, 1, (poly.indices.shape[1], 2))
        coef[pya.nchoosek(num_vars + 2, 2):, 0] = 0
        # for first qoi make degree 2 the best degree
        poly.set_coefficients(coef)

        train_samples = pya.generate_independent_random_samples(
            variable, num_samples)
        train_vals = poly(train_samples)
        true_poly = poly

        poly = approximate(
            train_samples, train_vals, "polynomial_chaos", {
                "basis_type": "hyperbolic_cross",
                "variable": variable,
                "options": {
                    "verbose": 3,
                    "solver_type": solver_type,
                    "min_degree": 1,
                    "max_degree": degree + 1,
                    "linear_solver_options": solver_options
                }
            }).approx

        num_validation_samples = 10
        validation_samples = pya.generate_independent_random_samples(
            variable, num_validation_samples)
        assert np.allclose(poly(validation_samples),
                           true_poly(validation_samples))

        poly = copy.deepcopy(true_poly)
        approx_res = cross_validate_pce_degree(
            poly,
            train_samples,
            train_vals,
            1,
            degree + 1,
            solver_type=solver_type,
            linear_solver_options=solver_options)
        assert np.allclose(approx_res.degrees, [2, 3])
    def test_pce_basis_expansion(self):
        num_vars = 2
        univariate_variables = [stats.uniform(-1, 2)] * num_vars
        variable = pya.IndependentMultivariateRandomVariable(
            univariate_variables)
        var_trans = pya.AffineRandomVariableTransformation(variable)
        poly = pya.PolynomialChaosExpansion()
        poly_opts = pya.define_poly_options_from_variable_transformation(
            var_trans)
        poly.configure(poly_opts)

        degree, hcross_strength = 7, 0.4
        poly.set_indices(
            pya.compute_hyperbolic_indices(num_vars, degree, hcross_strength))
        num_samples = poly.num_terms() * 2
        degrees = poly.indices.sum(axis=0)
        coef = np.random.normal(
            0, 1, (poly.indices.shape[1], 2)) / (degrees[:, np.newaxis] + 1)**2
        # set some coefficients to zero to make sure that different qoi
        # are treated correctly.
        II = np.random.permutation(coef.shape[0])[:coef.shape[0] // 2]
        coef[II, 0] = 0
        II = np.random.permutation(coef.shape[0])[:coef.shape[0] // 2]
        coef[II, 1] = 0
        poly.set_coefficients(coef)
        train_samples = pya.generate_independent_random_samples(
            variable, num_samples)
        train_vals = poly(train_samples)
        true_poly = poly

        poly = approximate(
            train_samples, train_vals, "polynomial_chaos", {
                "basis_type": "expanding_basis",
                "variable": variable,
                "options": {
                    "max_num_expansion_steps_iter": 1,
                    "verbose": 3,
                    "max_num_terms": 1000,
                    "max_num_step_increases": 2,
                    "max_num_init_terms": 33
                }
            }).approx

        num_validation_samples = 100
        validation_samples = pya.generate_independent_random_samples(
            variable, num_validation_samples)
        validation_samples = train_samples
        error = np.linalg.norm(
            poly(validation_samples) -
            true_poly(validation_samples)) / np.sqrt(num_validation_samples)
        assert np.allclose(poly(validation_samples),
                           true_poly(validation_samples),
                           atol=1e-8), error
    def test_approximate_neural_network(self):
        np.random.seed(2)
        benchmark = setup_benchmark("ishigami", a=7, b=0.1)
        nvars = benchmark.variable.num_vars()
        nqoi = 1
        maxiter = 30000
        print(benchmark.variable)
        # var_trans = pya.AffineRandomVariableTransformation(
        #      [stats.uniform(-2, 4)]*nvars)
        var_trans = pya.AffineRandomVariableTransformation(benchmark.variable)
        network_opts = {
            "activation_func": "sigmoid",
            "layers": [nvars, 75, nqoi],
            "loss_func": "squared_loss",
            "var_trans": var_trans,
            "lag_mult": 0
        }
        optimizer_opts = {
            "method": "L-BFGS-B",
            "options": {
                "maxiter": maxiter,
                "iprint": -1,
                "gtol": 1e-6
            }
        }
        opts = {
            "network_opts": network_opts,
            "verbosity": 3,
            "optimizer_opts": optimizer_opts
        }
        ntrain_samples = 500
        train_samples = pya.generate_independent_random_samples(
            var_trans.variable, ntrain_samples)
        train_samples = var_trans.map_from_canonical_space(
            np.cos(np.random.uniform(0, np.pi, (nvars, ntrain_samples))))
        train_vals = benchmark.fun(train_samples)

        opts = {
            "network_opts": network_opts,
            "verbosity": 3,
            "optimizer_opts": optimizer_opts,
            "x0": 10
        }
        approx = approximate(train_samples, train_vals, "neural_network",
                             opts).approx
        nsamples = 100
        error = compute_l2_error(approx, benchmark.fun, var_trans.variable,
                                 nsamples)
        print(error)
        assert error < 6e-2
Beispiel #5
0
    def test_analyze_sensitivity_polynomial_chaos(self):
        from pyapprox.benchmarks.benchmarks import setup_benchmark
        from pyapprox.approximate import approximate
        benchmark = setup_benchmark("ishigami", a=7, b=0.1)

        num_samples = 1000
        train_samples = pya.generate_independent_random_samples(
            benchmark.variable, num_samples)
        train_vals = benchmark.fun(train_samples)

        pce = approximate(
            train_samples, train_vals, 'polynomial_chaos', {
                'basis_type': 'hyperbolic_cross',
                'variable': benchmark.variable,
                'options': {
                    'max_degree': 8
                }
            }).approx

        res = analyze_sensitivity_polynomial_chaos(pce)
        assert np.allclose(res.main_effects, benchmark.main_effects, atol=2e-3)
 def test_approximate_polynomial_chaos_custom_poly_type(self):
     benchmark = setup_benchmark("ishigami", a=7, b=0.1)
     nvars = benchmark.variable.num_vars()
     # this test purposefully select wrong variable to make sure
     # poly_type overide is activated
     univariate_variables = [stats.beta(5, 5, -np.pi, 2 * np.pi)] * nvars
     variable = pya.IndependentMultivariateRandomVariable(
         univariate_variables)
     var_trans = pya.AffineRandomVariableTransformation(variable)
     # specify correct basis so it is not chosen from var_trans.variable
     poly_opts = {"var_trans": var_trans}
     # but rather from another variable which will invoke Legendre polys
     basis_opts = pya.define_poly_options_from_variable(
         pya.IndependentMultivariateRandomVariable([stats.uniform()] *
                                                   nvars))
     poly_opts["poly_types"] = basis_opts
     options = {
         "poly_opts": poly_opts,
         "variable": variable,
         "options": {
             "max_num_step_increases": 1
         }
     }
     ntrain_samples = 400
     train_samples = np.random.uniform(-np.pi, np.pi,
                                       (nvars, ntrain_samples))
     train_vals = benchmark.fun(train_samples)
     approx = approximate(train_samples,
                          train_vals,
                          method="polynomial_chaos",
                          options=options).approx
     nsamples = 100
     error = compute_l2_error(approx,
                              benchmark.fun,
                              approx.var_trans.variable,
                              nsamples,
                              rel=True)
     # print(error)
     assert error < 1e-4
     assert np.allclose(approx.mean(), benchmark.mean, atol=error)
    def test_cross_validate_approximation_after_regularization_selection(self):
        """
        This test is useful as it shows how to use cross_validate_approximation
        to produce a list of approximations on each cross validation fold
        once regularization parameters have been chosen.
        These can be used to show variance in predictions of values,
        sensitivity indices, etc.

        Ideally this could be avoided if sklearn stored the coefficients
        and alphas for each fold and then we can just find the coefficients
        that correspond to the first time the path drops below the best_alpha
        """
        num_vars = 2
        univariate_variables = [stats.uniform(-1, 2)] * num_vars
        variable = pya.IndependentMultivariateRandomVariable(
            univariate_variables)
        var_trans = pya.AffineRandomVariableTransformation(variable)
        poly = pya.PolynomialChaosExpansion()
        poly_opts = pya.define_poly_options_from_variable_transformation(
            var_trans)
        poly.configure(poly_opts)

        degree, hcross_strength = 7, 0.4
        poly.set_indices(
            pya.compute_hyperbolic_indices(num_vars, degree, hcross_strength))
        num_samples = poly.num_terms() * 2
        degrees = poly.indices.sum(axis=0)
        coef = np.random.normal(
            0, 1, (poly.indices.shape[1], 2)) / (degrees[:, np.newaxis] + 1)**2
        # set some coefficients to zero to make sure that different qoi
        # are treated correctly.
        II = np.random.permutation(coef.shape[0])[:coef.shape[0] // 2]
        coef[II, 0] = 0
        II = np.random.permutation(coef.shape[0])[:coef.shape[0] // 2]
        coef[II, 1] = 0
        poly.set_coefficients(coef)
        train_samples = pya.generate_independent_random_samples(
            variable, num_samples)
        train_vals = poly(train_samples)
        # true_poly = poly

        result = approximate(train_samples, train_vals, "polynomial_chaos", {
            "basis_type": "expanding_basis",
            "variable": variable
        })

        # Even with the same folds, iterative methods such as Lars, LarsLasso
        # and OMP will not have cv_score from approximate and cross validate
        # approximation exactly the same because iterative methods interpolate
        # residuals to compute cross validation scores
        nfolds = 10
        linear_solver_options = [{
            "alpha": result.reg_params[0]
        }, {
            "alpha": result.reg_params[1]
        }]
        indices = [
            result.approx.indices[:, np.where(np.absolute(c) > 0)[0]]
            for c in result.approx.coefficients.T
        ]
        options = {
            "basis_type": "fixed",
            "variable": variable,
            "options": {
                "linear_solver_options": linear_solver_options,
                "indices": indices
            }
        }
        approx_list, residues_list, cv_score = \
            cross_validate_approximation(
                train_samples, train_vals, options, nfolds, "polynomial_chaos",
                random_folds="sklearn")

        assert (np.all(cv_score < 6e-14) and np.all(result.scores < 4e-13))
Beispiel #8
0
    def test_analytic_sobol_indices_from_gaussian_process(self):
        from pyapprox.benchmarks.benchmarks import setup_benchmark
        from pyapprox.approximate import approximate
        benchmark = setup_benchmark("ishigami", a=7, b=0.1)
        nvars = benchmark.variable.num_vars()

        ntrain_samples = 500
        # train_samples = pya.generate_independent_random_samples(
        #     benchmark.variable, ntrain_samples)
        train_samples = pya.sobol_sequence(nvars,
                                           ntrain_samples,
                                           variable=benchmark.variable)

        train_vals = benchmark.fun(train_samples)
        approx = approximate(train_samples, train_vals, 'gaussian_process', {
            'nu': np.inf,
            'normalize_y': True,
            'alpha': 1e-10
        }).approx

        nsobol_samples = int(1e4)
        from pyapprox.approximate import compute_l2_error
        error = compute_l2_error(approx,
                                 benchmark.fun,
                                 benchmark.variable,
                                 nsobol_samples,
                                 rel=True)
        print(error)

        order = 2
        interaction_terms = compute_hyperbolic_indices(nvars, order)
        interaction_terms = interaction_terms[:,
                                              np.where(
                                                  interaction_terms.max(
                                                      axis=0) == 1)[0]]

        result = analytic_sobol_indices_from_gaussian_process(
            approx,
            benchmark.variable,
            interaction_terms,
            ngp_realizations=1000,
            stat_functions=(np.mean, np.std),
            ninterpolation_samples=2000,
            ncandidate_samples=3000,
            use_cholesky=False,
            alpha=1e-8)

        mean_mean = result['mean']['mean']
        mean_sobol_indices = result['sobol_indices']['mean']
        mean_total_effects = result['total_effects']['mean']
        mean_main_effects = mean_sobol_indices[:nvars]

        print(result['mean']['values'][-1])
        print(result['variance']['values'][-1])
        print(benchmark.main_effects[:, 0] - mean_main_effects)
        print(benchmark.total_effects[:, 0] - mean_total_effects)
        print(benchmark.sobol_indices[:-1, 0] - mean_sobol_indices)
        assert np.allclose(mean_mean, benchmark.mean, rtol=1e-3, atol=3e-3)
        assert np.allclose(mean_main_effects,
                           benchmark.main_effects[:, 0],
                           rtol=1e-3,
                           atol=3e-3)
        assert np.allclose(mean_total_effects,
                           benchmark.total_effects[:, 0],
                           rtol=1e-3,
                           atol=3e-3)
        assert np.allclose(mean_sobol_indices,
                           benchmark.sobol_indices[:-1, 0],
                           rtol=1e-3,
                           atol=3e-3)
Beispiel #9
0
    def test_sampling_based_sobol_indices_from_gaussian_process(self):
        from pyapprox.benchmarks.benchmarks import setup_benchmark
        from pyapprox.approximate import approximate
        benchmark = setup_benchmark("ishigami", a=7, b=0.1)
        nvars = benchmark.variable.num_vars()

        # nsobol_samples and ntrain_samples effect assert tolerances
        ntrain_samples = 500
        nsobol_samples = int(1e4)
        train_samples = pya.generate_independent_random_samples(
            benchmark.variable, ntrain_samples)
        # from pyapprox import CholeskySampler
        # sampler = CholeskySampler(nvars, 10000, benchmark.variable)
        # kernel = pya.Matern(
        #     np.array([1]*nvars), length_scale_bounds='fixed', nu=np.inf)
        # sampler.set_kernel(kernel)
        # train_samples = sampler(ntrain_samples)[0]

        train_vals = benchmark.fun(train_samples)
        approx = approximate(train_samples, train_vals, 'gaussian_process', {
            'nu': np.inf,
            'normalize_y': True
        }).approx

        from pyapprox.approximate import compute_l2_error
        error = compute_l2_error(approx,
                                 benchmark.fun,
                                 benchmark.variable,
                                 nsobol_samples,
                                 rel=True)
        print('error', error)
        # assert error < 4e-2

        order = 2
        interaction_terms = compute_hyperbolic_indices(nvars, order)
        interaction_terms = interaction_terms[:,
                                              np.where(
                                                  interaction_terms.max(
                                                      axis=0) == 1)[0]]

        result = sampling_based_sobol_indices_from_gaussian_process(
            approx,
            benchmark.variable,
            interaction_terms,
            nsobol_samples,
            sampling_method='sobol',
            ngp_realizations=1000,
            normalize=True,
            nsobol_realizations=3,
            stat_functions=(np.mean, np.std),
            ninterpolation_samples=1000,
            ncandidate_samples=2000)

        mean_mean = result['mean']['mean']
        mean_sobol_indices = result['sobol_indices']['mean']
        mean_total_effects = result['total_effects']['mean']
        mean_main_effects = mean_sobol_indices[:nvars]

        print(benchmark.mean - mean_mean)
        print(benchmark.main_effects[:, 0] - mean_main_effects)
        print(benchmark.total_effects[:, 0] - mean_total_effects)
        print(benchmark.sobol_indices[:-1, 0] - mean_sobol_indices)
        assert np.allclose(mean_mean, benchmark.mean, atol=3e-2)
        assert np.allclose(mean_main_effects,
                           benchmark.main_effects[:, 0],
                           atol=1e-2)
        assert np.allclose(mean_total_effects,
                           benchmark.total_effects[:, 0],
                           atol=1e-2)
        assert np.allclose(mean_sobol_indices,
                           benchmark.sobol_indices[:-1, 0],
                           atol=1e-2)
Beispiel #10
0
    for jj in inds:
        a, b = variable.all_variables()[jj].interval(1)
        x, w = gauss_jacobi_pts_wts_1D(nquad_samples_1d, 0, 0)
        x = (x+1)/2 # map to [0, 1]
        x = (b-a)*x+a # map to [a,b]
        quad_rules.append((x, w))
    funs = [identity_fun]*len(inds)
    basis_opts['basis%d' % ii] = {'poly_type': 'product_indpnt_vars',
                                    'var_nums': [ii], 'funs': funs,
                                    'quad_rules': quad_rules}
    cnt += 1
        
poly_opts = {'var_trans': re_var_trans}
poly_opts['poly_types'] = basis_opts
#var_trans.set_identity_maps(identity_map_indices) #wrong
re_var_trans.set_identity_maps(identity_map_indices) #right

indices = compute_hyperbolic_indices(re_variable.num_vars(), degree)
nterms = total_degree_space_dimension(samples_adjust.shape[0], degree)
options = {'basis_type': 'fixed', 'variable': re_variable,
            'poly_opts': poly_opts,
            'options': {'linear_solver_options': dict(),
                        'indices': indices, 'solver_type': 'lstsq'}}
                        
approx_res = approximate(samples_adjust[:, 0:(2 * nterms)], values[0:(2 * nterms)], 'polynomial_chaos', options).approx
y_hat = approx_res(samples_adjust[:, 2 * nterms:])
print((y_hat - values[2 * nterms:]).mean())
print(f'Mean of samples: {values.mean()}')
print(f'Mean of pce: {approx_res.mean()}')
Beispiel #11
0
import numpy as np
import pyapprox as pya
from pyapprox.benchmarks.benchmarks import setup_benchmark
from pyapprox.approximate import approximate

benchmark = setup_benchmark("ishigami", a=7, b=0.1)

num_samples = 1000
train_samples = pya.generate_independent_random_samples(
    benchmark.variable, num_samples)
train_vals = benchmark.fun(train_samples)

approx_res = approximate(
    train_samples, train_vals, 'polynomial_chaos', {
        'basis_type': 'hyperbolic_cross',
        'variable': benchmark.variable,
        'options': {
            'max_degree': 8
        }
    })
pce = approx_res.approx

res = pya.analyze_sensitivity_polynomial_chaos(pce)

#%%
#Now lets compare the estimated values with the exact value
print(res.main_effects[:, 0])
print(benchmark.main_effects[:, 0])

#%%
#We can visualize the sensitivity indices using the following