Beispiel #1
0
 def __init__(self, ds_fid):
     """
     The class contains a PyASDF Dataset that will be used to load observed
     and synthetic data, based on user input
     """
     self.ds = ASDFDataSet(ds_fid)
     # Initiate an empty Manager to get access to its config
     self.mgmt = Manager()
     self.info = Info()
Beispiel #2
0
 def setup(self, code):
     """
     Load waveforms from the dataset, and preprocess for windowing
     """
     # If Configure was run first, this will pass its config object over
     try:
         self.mgmt = Manager(ds=self.ds, config=self.mgmt.config)
         self.mgmt.load(code,
                        config=False,
                        synthetic_tag="synthetic_m00s00")
         self.mgmt.config.save_to_ds = False
         self.mgmt.standardize().preprocess()
     except Exception as e:
         raise WasherError(e)
Beispiel #3
0
def mgmt(config, event, st_obs, st_syn, inv):
    """
    A manager filled with data and that has progressed through the workflow
    """
    mgmt = Manager(config=config,
                   event=event,
                   st_obs=st_obs,
                   st_syn=st_syn,
                   inv=inv)
    mgmt.standardize()
    mgmt.preprocess()
    mgmt.window()
    mgmt.measure()
    return mgmt
Beispiel #4
0
def test_pyaflowa_process_station(tmpdir, seisflows_workdir, seed_data,
                                  source_name, station_name, PAR, PATH):
    """
    Test the single station processing function 
    """
    # Turn off client to avoid searching FDSN, force local data search
    PAR.CLIENT = None
    PATH.DATA = tmpdir.strpath
    pyaflowa = Pyaflowa(structure="seisflows",
                        sfpaths=PATH,
                        sfpar=PAR,
                        iteration=1,
                        step_count=0)

    # Copy working directory to tmpdir to avoid creating unnecessary files
    shutil.copytree(src=seisflows_workdir, dst=os.path.join(tmpdir, "scratch"))
    shutil.copytree(src=seed_data, dst=os.path.join(tmpdir, "seed"))

    # Set up the same machinery as process_event()
    io = pyaflowa.setup(source_name)
    with ASDFDataSet(io.paths.ds_file) as ds:
        mgmt = Manager(ds=ds, config=io.config)
        mgmt, io = pyaflowa.process_station(mgmt=mgmt,
                                            code="NZ.BFZ.??.???",
                                            io=io)

    assert (io.nwin == mgmt.stats.nwin == 3)
    assert (io.misfit == pytest.approx(65.39037, .001))
Beispiel #5
0
def test_read_write_from_asdfdataset(tmpdir, mgmt_pre, config):
    """
    Write a Manager into an ASDFDataSet and then read it back
    """
    with ASDFDataSet(os.path.join(tmpdir, "test_dataset.h5")) as ds:
        mgmt_pre.ds = ds
        mgmt_pre.write(write_to="ds")

        # Load data back from dataset
        mgmt_loaded = Manager(ds=ds, config=config)
        mgmt_loaded.load("NZ.BFZ", path="default")

        # Manager has no equivalence represenation so just check some ids
        assert(mgmt_pre.stats.event_id == mgmt_loaded.stats.event_id)
        assert(mgmt_pre.stats.len_obs == mgmt_loaded.stats.len_obs)
        assert(mgmt_pre.stats.len_syn == mgmt_loaded.stats.len_syn)
        assert(mgmt_pre.stats.inv_name == mgmt_loaded.stats.inv_name)
Beispiel #6
0
def mgmt_pre(config, event, st_obs, st_syn, inv):
    """
    A manager filled with data but pre-workflow
    """
    return Manager(config=config,
                   event=event,
                   st_obs=st_obs,
                   st_syn=st_syn,
                   inv=inv)
Beispiel #7
0
    def gather_simple(self,
                      event,
                      sta,
                      min_period,
                      max_period,
                      path_dict=None,
                      component=None):
        """
        Manually set the model values based on inspection of the Inspector
        Don't return windows or anything, keep it simple
        """

        models = {
            "m00": ("i01/s00", "a"),
            "m03": ("i03/s03", "a"),
            "m09": ("i09/s02", "a"),
            "m12": ("i12/s04", "a"),
            "m17": ("i17/s01", "a"),
            "m24": ("i07/s01", "b"),
            "m28": ("i11/s03", "c"),
        }
        st_obs, synthetics = None, {}
        windows = None
        for model, tup in models.items():
            path, tag = tup
            if path_dict:
                ds_fid = os.path.join(path_dict[tag], f"{event_id}.h5")
            else:
                ds_fid = f"{event_id}{tag}.h5"
            with asdf(ds_fid, mode="r") as ds:
                mgmt = Manager(ds=ds)
                mgmt.load(sta, path)
                mgmt.config.save_to_ds = False
                mgmt.config.min_period = min_period
                mgmt.config.max_period = max_period
                mgmt.standardize().preprocess()

                if component:
                    synthetics[model] = mgmt.st_syn.select(
                        component=component).copy()
                else:
                    synthetics[model] = mgmt.st_syn.copy()
                if st_obs is None:
                    if component:
                        st_obs = mgmt.st_obs.select(component=component).copy()
                    else:
                        st_obs = mgmt.st_obs.copy()

        self.st_obs = st_obs
        self.synthetics = synthetics
Beispiel #8
0
    def _gather_model_from_dataset(self,
                                   dsfid,
                                   model=None,
                                   init_or_final=None,
                                   save_windows=False):
        """
        Gather data from an ASDFDataSet based on the given model (iter/step)

        :type dsfid: str
        :param dsfid: file identifier for the dataset
        :type model: str
        :param model: iteration/step, e.g. 'i01/s00'
        :type init_or_final: str
        :param init_or_final: for choosing default values if model is None
            * 'init': choose the first iteration/step for the initial model
            * 'final': choose final iteration/step for final model
        :return:
        """
        assert (init_or_final in ["init", "final"])

        with ASDFDataSet(dsfid, mode="r") as ds:
            if model is None:
                configs = ds.auxiliary_data.Configs
                if init_or_final is "init":
                    idx = 0
                elif init_or_final is "final":
                    idx = -1
                iter_ = configs.list()[idx]
                step_ = configs[iter_].list()[idx]
                model = f"{iter_}/{step_}"

            # Use the Manager class to load in waveform data
            mgmt = Manager(ds=ds)
            mgmt.load(code=self.station, path=model)
            mgmt.config.save_to_ds = False

            # !!! NZ Temp network skip remove response
            net, sta = self.station.split(".")
            remove_response = not bool(net in ["ZX", "Z8"])

            # Overwrite the filter corners stored in the dataset
            mgmt.config.min_period = self.min_period
            mgmt.config.max_period = self.max_period
            mgmt.standardize().preprocess(remove_response=remove_response)
            # See if windows can be picked for the given load setup
            if save_windows:
                pf_cfg = "nznorth_6-30s"
                mgmt.config.pyflex_preset = pf_cfg
                mgmt.config.pyflex_config, _ = set_pyflex_config(
                    mgmt.config.min_period, mgmt.config.max_period, pf_cfg)
                mgmt.window()
                print(f"{mgmt.stats.nwin} windows for {init_or_final}")

                if save_windows == "init":
                    self.init_windows = mgmt.windows
                elif save_windows == "final":
                    self.final_windows = mgmt.windows
                else:
                    # Any check that returns no windows will set this False
                    self.windows = mgmt.windows

            # Store data in class attributes, obs waveforms will be the same
            if self._st_obs is None:
                self._st_obs = mgmt.st_obs
            if self._inv is None:
                self._inv = mgmt.inv
            if self._event is None:
                self._event = mgmt.event
            setattr(self, f"_st_{init_or_final}", mgmt.st_syn)
            setattr(self, f"_m_{init_or_final}", model)
Beispiel #9
0
    def gather(self,
               sta,
               min_period,
               max_period,
               rotate_to_rtz=False,
               fix_windows=False,
               pyflex_preset=False):
        """
        Parse dataset for given station, gather observed and synthetic data, 
        preprocess data and return as stream objects.

        :type sta: str
        :param sta: station to gather data for
        :type min_period: float
        :param min_period: minimum filter period in seconds
        :type max_period: float
        :param max_period: maximum filter period in seconds
        :type rotate_to_rtz: bool
        :param rotate_to_rtz: rotate components from NEZ to RTZ
            Config. if False, instrument response will be removed from obs.
        :type fix_windows: bool
        :param fix_windows: dont recalculate windows when gathering
        :type pyflex_preset: str
        :param pyflex_preset: overwrite the pyflex preset provided in the
            Config object
        """
        if min_period is None or max_period is None:
            raise TypeError("must specify 'min_period' and 'max_period'")

        assert (sta in self.ds.waveforms.list()), f"{sta} not in ASDFDataSet"

        models = self.get_models()

        # Preprocess all traces using Pyatoa and store in dict
        st_obs, synthetics, windows = None, {}, {}
        for model, path in models.items():
            # Gather synthetic data
            mgmt = Manager(ds=self.ds)
            print(path)
            mgmt.load(sta, path)

            # Overwrite some config parameters
            mgmt.config.save_to_ds = False
            mgmt.config.min_period = min_period
            mgmt.config.max_period = max_period
            if rotate_to_rtz:
                mgmt.config.rotate_to_rtz = rotate_to_rtz
                mgmt.config.component_list = ["Z", "R", "T"]
            if pyflex_preset:
                mgmt.config.pyflex_preset = pyflex_preset
                mgmt.config._check()

            mgmt.standardize()
            mgmt.preprocess()
            iter_, step_ = path.split("/")
            mgmt.window(fix_windows=fix_windows,
                        iteration=iter_,
                        step_count=step_)

            windows[model] = mgmt.windows
            synthetics[model] = mgmt.st_syn.copy()

            # Observed waveform will be the same
            if st_obs is None:
                st_obs = mgmt.st_obs.copy()

        # Internally used by plotting function
        self.st_obs = st_obs
        self.synthetics = synthetics
        self.windows = windows
        self.time_axis = self.st_obs[0].times(
            reftime=st_obs[0].stats.starttime - mgmt.stats.time_offset_sec)
Beispiel #10
0
class WindowWasher:
    """
    Test time windowing using Pyflex presets
    """
    def __init__(self, ds_fid):
        """
        The class contains a PyASDF Dataset that will be used to load observed
        and synthetic data, based on user input
        """
        self.ds = ASDFDataSet(ds_fid)
        # Initiate an empty Manager to get access to its config
        self.mgmt = Manager()
        self.info = Info()

    def setup(self, code):
        """
        Load waveforms from the dataset, and preprocess for windowing
        """
        # If Configure was run first, this will pass its config object over
        try:
            self.mgmt = Manager(ds=self.ds, config=self.mgmt.config)
            self.mgmt.load(code,
                           config=False,
                           synthetic_tag="synthetic_m00s00")
            self.mgmt.config.save_to_ds = False
            self.mgmt.standardize().preprocess()
        except Exception as e:
            raise WasherError(e)

    def configure(self, min_period, max_period, preset="default", **kwargs):
        """
        Configure the Pyflex Parameters, either by passing kwargs or
        choosing preset
        :return:
        """
        self.mgmt.config.min_period = min_period
        self.mgmt.config.max_period = max_period
        self.mgmt.config.pyflex_preset = preset
        self.mgmt.config.pyflex_config, unused = set_pyflex_config(
            choice=preset,
            min_period=min_period,
            max_period=max_period,
            **kwargs)
        if unused:
            for uu in unused:
                print(f"{uu} is not a valid Pyflex parameter")

    def set(self, **kwargs):
        """
        After a Pyflex Config has been set by 'configure', can 'set' individual
        parameters for fine-tuning
        """
        assert self.mgmt is not None
        for key in kwargs.keys():
            assert hasattr(self.mgmt.config.pyflex_config, key), f"{key} no no"

        vars(self.mgmt.config.pyflex_config).update(**kwargs)

    def check(self, key):
        """
        Check what the current kwarg value of the Pyflex config is
        """
        assert self.mgmt is not None
        if hasattr(self.mgmt.config.pyflex_config, key):
            print(f"{key}: {getattr(self.mgmt.config.pyflex_config, key)}")
        else:
            print(f"{key}: NOT FOUND")

    def wash(self):
        """
        Run Manager window() function and plot the waveforms, no map, to look at
        window quality.
        """
        assert (self.mgmt is not None)
        self.mgmt.window()
        self.mgmt.plot(choice="wav", show=True, save=None)
Beispiel #11
0
"""
It's useful to generate a fully loaded Manager object for testing purposes. 
Load data from the test directory and run the Manager workflow to achieve this.
"""
import ipdb
from IPython import embed
from pyatoa import Manager, Config
from obspy import read, read_events, read_inventory

# Generate ObsPy classes of data and dataless
st_obs = read("../tests/test_data/test_obs_data_NZ_BFZ_2018p130600.ascii")
st_syn = read("../tests/test_data/test_syn_data_NZ_BFZ_2018p130600.ascii")
event = read_events("../tests/test_data/test_catalog_2018p130600.xml")[0]
inv = read_inventory("../tests/test_data/test_dataless_NZ_BFZ.xml")

# Create the Manager using read in data
cfg = Config(event_id="2018p130600")
mgmt = Manager(config=cfg, event=event, st_obs=st_obs, st_syn=st_syn, inv=inv)
mgmt.flow()

ipdb.set_trace()
embed(colors="neutral")
Beispiel #12
0
import os
from pyatoa import Manager
from pyasdf import ASDFDataSet as asdf
import matplotlib.pyplot as plt

periods = [3, 4]

with asdf("2015p768477_birch.h5") as ds:
    for station in ds.waveforms.list():
        f, axes = plt.subplots(3)
        mgmt = Manager(ds=ds)
        try:
            for i, min_period in enumerate(periods):
                mgmt.load(station, path="i11/s05")
                mgmt.config.min_period = min_period
                mgmt.standardize().preprocess()
                for j, tr in enumerate(mgmt.st_obs):
                    axes[j].plot(tr.times(), tr.data, 
                                 c={0: "k", 1: "r"}[i])
                mgmt.reset()

            axes[0].set_title(station)
            axes[1].set_ylabel("Displacement [m]")
            axes[2].set_xlabel("Time [s]")
            fid = f"{station}_2015p768477_{periods[0]}vs{periods[1]}s.png"

            plt.savefig(os.path.join("figures", fid), dpi=100)
            plt.close()
        except Exception as e:
            print(f"{station}: {e}")
            plt.close()