Beispiel #1
0
    def calculated_metadata(self, df=None, geometries=True, clean_cols=True, clean_rows=True):
        if df is None:
            df = self.to_dataframe(clean_cols=clean_cols, clean_rows=clean_rows)

        trajectories = {}
        for tid, tgroup in df.groupby('trajectory'):
            tgroup = tgroup.sort_values('t')
            first_row = tgroup.iloc[0]
            first_loc = Point(first_row.x, first_row.y)

            geometry = None
            if geometries:
                coords = list(unique_justseen(zip(tgroup.x, tgroup.y)))
                if len(coords) > 1:
                    geometry = LineString(coords)
                elif coords == 1:
                    geometry = first_loc

            trajectory = namedtuple('Trajectory', ['min_z', 'max_z', 'min_t', 'max_t', 'first_loc', 'geometry'])
            trajectories[tid] = trajectory(
                min_z=tgroup.z.min(),
                max_z=tgroup.z.max(),
                min_t=tgroup.t.min(),
                max_t=tgroup.t.max(),
                first_loc=first_loc,
                geometry=geometry
            )

        meta = namedtuple('Metadata', ['min_t', 'max_t', 'trajectories'])
        return meta(
            min_t=df.t.min(),
            max_t=df.t.max(),
            trajectories=trajectories
        )
Beispiel #2
0
    def calculated_metadata(self,
                            df=None,
                            geometries=True,
                            clean_cols=True,
                            clean_rows=True):
        if df is None:
            df = self.to_dataframe(clean_cols=clean_cols,
                                   clean_rows=clean_rows)

        trajectories = {}
        for tid, tgroup in df.groupby('trajectory'):
            tgroup = tgroup.sort_values('t')

            profiles = {}
            for pid, pgroup in tgroup.groupby('profile'):
                pgroup = pgroup.sort_values('t')
                first_row = pgroup.iloc[0]
                profile = namedtuple('Profile',
                                     ['min_z', 'max_z', 't', 'x', 'y', 'loc'])
                profiles[pid] = profile(min_z=pgroup.z.min(),
                                        max_z=pgroup.z.max(),
                                        t=first_row.t,
                                        x=first_row.x,
                                        y=first_row.y,
                                        loc=Point(first_row.x, first_row.y))

            geometry = None
            first_row = tgroup.iloc[0]
            first_loc = Point(first_row.x, first_row.y)
            if geometries:
                # only extract non-null pairs
                null_coordinates = tgroup.x.isnull() | tgroup.y.isnull()
                coords = list(
                    unique_justseen(
                        zip(tgroup.x[~null_coordinates].tolist(),
                            tgroup.y[~null_coordinates].tolist())))
                if len(coords) > 1:
                    geometry = LineString(coords)
                elif coords == 1:
                    geometry = first_loc

            trajectory = namedtuple('Trajectory', [
                'min_z', 'max_z', 'min_t', 'max_t', 'profiles', 'first_loc',
                'geometry'
            ])
            trajectories[tid] = trajectory(min_z=tgroup.z.min(),
                                           max_z=tgroup.z.max(),
                                           min_t=tgroup.t.min(),
                                           max_t=tgroup.t.max(),
                                           profiles=profiles,
                                           first_loc=first_loc,
                                           geometry=geometry)

        meta = namedtuple('Metadata',
                          ['min_z', 'max_z', 'min_t', 'max_t', 'trajectories'])
        return meta(min_z=df.z.min(),
                    max_z=df.z.max(),
                    min_t=df.t.min(),
                    max_t=df.t.max(),
                    trajectories=trajectories)
Beispiel #3
0
    def calculated_metadata(self, df=None, geometries=True, clean_cols=True, clean_rows=True):
        if df is None:
            df = self.to_dataframe(clean_cols=clean_cols, clean_rows=clean_rows)

        profiles = {}
        for pid, pgroup in df.groupby('profile'):
            pgroup = pgroup.sort_values('t')
            first_row = pgroup.iloc[0]
            profile = namedtuple('Profile', ['min_z', 'max_z', 't', 'x', 'y', 'loc'])
            profiles[pid] = profile(
                min_z=pgroup.z.min(),
                max_z=pgroup.z.max(),
                t=first_row.t,
                x=first_row.x,
                y=first_row.y,
                loc=Point(first_row.x, first_row.y)
            )

        geometry = None
        first_row = df.iloc[0]
        first_loc = Point(first_row.x, first_row.y)
        if geometries:
            coords = list(unique_justseen(zip(df.x, df.y)))
            if len(coords) > 1:
                geometry = LineString(coords)  # noqa
            elif len(coords) == 1:
                geometry = first_loc  # noqa

        meta = namedtuple('Metadata', ['min_z', 'max_z', 'min_t', 'max_t', 'profiles', 'first_loc', 'geometry'])
        return meta(
            min_z=df.z.min(),
            max_z=df.z.max(),
            min_t=df.t.min(),
            max_t=df.t.max(),
            profiles=profiles,
            first_loc=first_loc,
            geometry=geometry
        )