def evidence_updated(self, join_tree):
        """
        Evidence is updated.

        :param join_tree: Join tree.
        """
        Propagator.propagate(join_tree)
 def evidence_retracted(self, join_tree):
     """
     Evidence is retracted.
     :param join_tree: Join tree.
     """
     Initializer.initialize(join_tree)
     Propagator.propagate(join_tree)
Beispiel #3
0
def test_propagator():
    bbn = BbnUtil.get_huang_graph()
    PotentialInitializer.init(bbn)

    ug = Moralizer.moralize(bbn)
    cliques = Triangulator.triangulate(ug)

    join_tree = Transformer.transform(cliques)

    Initializer.initialize(join_tree)
    Propagator.propagate(join_tree)
    def apply_from_serde(join_tree):
        """
        Applies propagation to join tree from a deserialzed join tree.

        :param join_tree: Join tree.
        :return: Join tree (the same one passed in).
        """
        join_tree.listener = None
        join_tree.evidences = dict()

        PotentialInitializer.reinit(join_tree)
        Initializer.initialize(join_tree)
        Propagator.propagate(join_tree)

        join_tree.set_listener(InferenceController())

        return join_tree
    def apply(bbn):
        """
        Sets up the specified BBN for probability propagation in tree clusters (PPTC).
        :param bbn: BBN graph.
        :return: Join tree.
        """
        PotentialInitializer.init(bbn)

        ug = Moralizer.moralize(bbn)
        cliques = Triangulator.triangulate(ug)
        join_tree = Transformer.transform(cliques)

        Initializer.initialize(join_tree)
        Propagator.propagate(join_tree)

        join_tree.set_listener(InferenceController())

        return join_tree
    def reapply(join_tree, cpts):
        """
        Reapply propagation to join tree with new CPTs. The join tree structure is kept but the BBN node CPTs
        are updated. A new instance/copy of the join tree will be returned.

        :param join_tree: Join tree.
        :param cpts: Dictionary of new CPTs. Keys are id's of nodes and values are new CPTs.
        :return: Join tree.
        """
        jt = copy.deepcopy(join_tree)
        jt.update_bbn_cpts(cpts)
        jt.listener = None
        jt.evidences = dict()

        PotentialInitializer.reinit(jt)
        Initializer.initialize(jt)
        Propagator.propagate(jt)

        jt.set_listener(InferenceController())

        return jt
Beispiel #7
0
def test_propagator():
    """
    Tests propagation.
    :return: None.
    """
    bbn = BbnUtil.get_huang_graph()
    PotentialInitializer.init(bbn)

    ug = Moralizer.moralize(bbn)
    cliques = Triangulator.triangulate(ug)

    join_tree = Transformer.transform(cliques)

    Initializer.initialize(join_tree)
    Propagator.propagate(join_tree)

    e_potentials = {
        '3=on,4=on,5=on': 0.00315,
        '3=on,4=on,5=off': 0.31155,
        '3=on,4=off,5=on': 0.00365,
        '3=on,4=off,5=off': 0.36165,
        '3=off,4=on,5=on': 0.00150,
        '3=off,4=on,5=off': 0.14880,
        '3=off,4=off,5=on': 0.16800,
        '3=off,4=off,5=off': 0.00170,
        '4=on,6=on,7=on': 0.00705,
        '4=on,6=on,7=off': 0.13395,
        '4=on,6=off,7=on': 0.30780,
        '4=on,6=off,7=off': 0.01620,
        '4=off,6=on,7=on': 0.26030,
        '4=off,6=on,7=off': 0.01370,
        '4=off,6=off,7=on': 0.24795,
        '4=off,6=off,7=off': 0.01305,
        '2=on,4=on,6=on': 0.10800,
        '2=on,4=on,6=off': 0.02700,
        '2=on,4=off,6=on': 0.25200,
        '2=on,4=off,6=off': 0.06300,
        '2=off,4=on,6=on': 0.03300,
        '2=off,4=on,6=off': 0.29700,
        '2=off,4=off,6=on': 0.02200,
        '2=off,4=off,6=off': 0.19800,
        '0=on,1=on,2=on': 0.17500,
        '0=off,1=on,2=on': 0.04000,
        '0=on,1=on,2=off': 0.07500,
        '0=off,1=on,2=off': 0.16000,
        '0=on,1=off,2=on': 0.17500,
        '0=off,1=off,2=on': 0.06000,
        '0=on,1=off,2=off': 0.07500,
        '0=off,1=off,2=off': 0.24000,
        '1=on,2=on,3=on': 0.19350,
        '1=off,2=on,3=on': 0.11750,
        '1=on,2=on,3=off': 0.02150,
        '1=off,2=on,3=off': 0.11750,
        '1=on,2=off,3=on': 0.21150,
        '1=off,2=off,3=on': 0.15750,
        '1=on,2=off,3=off': 0.02350,
        '1=off,2=off,3=off': 0.15750,
        '2=on,3=on,4=on': 0.09330,
        '2=off,3=on,4=on': 0.22140,
        '2=on,3=on,4=off': 0.21770,
        '2=off,3=on,4=off': 0.14760,
        '2=on,3=off,4=on': 0.04170,
        '2=off,3=off,4=on': 0.10860,
        '2=on,3=off,4=off': 0.09730,
        '2=off,3=off,4=off': 0.07240,
        '1=on,2=on': 0.21500,
        '1=on,2=off': 0.23500,
        '1=off,2=on': 0.23500,
        '1=off,2=off': 0.31500,
        '2=on,3=on': 0.31100,
        '2=on,3=off': 0.13900,
        '2=off,3=on': 0.36900,
        '2=off,3=off': 0.18100,
        '2=on,4=on': 0.13500,
        '2=on,4=off': 0.31500,
        '2=off,4=on': 0.33000,
        '2=off,4=off': 0.22000,
        '3=on,4=on': 0.31470,
        '3=on,4=off': 0.36530,
        '3=off,4=on': 0.15030,
        '3=off,4=off': 0.16970,
        '4=on,6=on': 0.14100,
        '4=on,6=off': 0.32400,
        '4=off,6=on': 0.27400,
        '4=off,6=off': 0.26100
    }

    o_potentials = '\n'.join([str(v) for _, v in join_tree.potentials.items()
                              ]).split('\n')
    o_potentials = [p.split('|') for p in o_potentials]
    o_potentials = {tokens[0]: float(tokens[1]) for tokens in o_potentials}

    assert len(e_potentials) == len(o_potentials)
    for k, lhs in o_potentials.items():
        assert k in e_potentials
        rhs = e_potentials[k]

        assert lhs == rhs