Beispiel #1
0
def parse_object(obj, mesh_directory):
    name = obj.find('name').text
    mesh_filename = obj.find('geom').text
    geom = get_mesh_geometry(os.path.join(mesh_directory, mesh_filename))
    pose = parse_pose(obj.find('pose'))
    movable = parse_boolean(obj.find('moveable'))

    color = (.75, .75, .75, 1)
    if 'red' in name:
        color = (1, 0, 0, 1)
    elif 'green' in name:
        color = (0, 1, 0, 1)
    elif 'blue' in name:
        color = (0, 0, 1, 1)
    elif movable:  # TODO: assign new color
        #size = 2 * MAX_INT
        #size = 255
        #n = id(obj) % size
        #n = hash(obj) % size
        #h = float(n) / size
        h = random.random()
        r, g, b = colorsys.hsv_to_rgb(h, .75, .75)
        color = (r, g, b, 1)
    print(name, mesh_filename, movable, color)

    collision_id, visual_id = create_shape(geom, color=color)
    body_id = p.createMultiBody(baseMass=STATIC_MASS,
                                baseCollisionShapeIndex=collision_id,
                                baseVisualShapeIndex=visual_id,
                                physicsClientId=CLIENT)
    set_pose(body_id, pose)

    return body_id
Beispiel #2
0
def main(display='control'):  # control | execute | step
    connect(use_gui=True)
    disable_real_time()
    # KUKA_IIWA_URDF | DRAKE_IIWA_URDF
    robot = load_model(DRAKE_IIWA_URDF, fixed_base=True)
    # floor = load_model('models/short_floor.urdf')
    floor = p.loadURDF("plane.urdf")
    block = load_model(
        "models/drake/objects/block_for_pick_and_place_heavy.urdf", fixed_base=False)
    set_pose(block, Pose(Point(y=0.5, z=stable_z(block, floor))))
    set_default_camera()
    dump_world()

    saved_world = WorldSaver()
    command = plan(robot, block, fixed=[floor], teleport=False)
    if (command is None) or (display is None):
        print('Unable to find a plan!')
        return

    saved_world.restore()
    update_state()
    user_input('{}?'.format(display))
    if display == 'control':
        enable_gravity()
        command.control(real_time=False, dt=0)
    elif display == 'execute':
        command.refine(num_steps=10).execute(time_step=0.005)
    elif display == 'step':
        command.step()
    else:
        raise ValueError(display)

    print('Quit?')
    wait_for_user()
    disconnect()
Beispiel #3
0
def relative_detections(belief, detections):
    world = belief.world
    rel_detections = {}
    world_aabb = world.get_world_aabb()
    for name in detections:
        if name == belief.holding:
            continue
        body = world.get_body(name)
        for observed_pose in detections[name]:
            world_z_axis = np.array([0, 0, 1])
            local_z_axis = tform_point(observed_pose, world_z_axis)
            if np.pi / 2 < angle_between(world_z_axis, local_z_axis):
                observed_pose = multiply(observed_pose,
                                         Pose(euler=Euler(roll=np.pi)))
            if not aabb_contains_point(point_from_pose(observed_pose),
                                       world_aabb):
                continue
            set_pose(body, observed_pose)
            support = world.get_supporting(name)
            #assert support is not None
            # Could also fix as relative to the world
            if support is None:
                # TODO: prune if nowhere near a surface (e.g. on the robot)
                relative_pose = create_world_pose(world, name, init=True)
            else:
                relative_pose = create_relative_pose(world,
                                                     name,
                                                     support,
                                                     init=True)
            rel_detections.setdefault(name, []).append(relative_pose)
            # relative_pose.assign()
    return rel_detections
def main(display='execute'):  # control | execute | step
    connect(use_gui=True)
    disable_real_time()
    draw_global_system()
    with HideOutput():
        robot = load_model(DRAKE_IIWA_URDF)  # KUKA_IIWA_URDF | DRAKE_IIWA_URDF
        floor = load_model('models/short_floor.urdf')
    block = load_model(BLOCK_URDF, fixed_base=False)
    set_pose(block, Pose(Point(y=0.5, z=stable_z(block, floor))))
    set_default_camera(distance=2)
    dump_world()

    saved_world = WorldSaver()
    command = plan(robot, block, fixed=[floor], teleport=False)
    if (command is None) or (display is None):
        print('Unable to find a plan!')
        return

    saved_world.restore()
    update_state()
    wait_if_gui('{}?'.format(display))
    if display == 'control':
        enable_gravity()
        command.control(real_time=False, dt=0)
    elif display == 'execute':
        command.refine(num_steps=10).execute(time_step=0.005)
    elif display == 'step':
        command.step()
    else:
        raise ValueError(display)

    print('Quit?')
    wait_if_gui()
    disconnect()
Beispiel #5
0
def lower_spoon(world, bowl_name, spoon_name, min_spoon_z, max_spoon_z):
    assert min_spoon_z <= max_spoon_z
    bowl_body = world.get_body(bowl_name)
    bowl_urdf_from_center = get_urdf_from_base(
        bowl_body)  # get_urdf_from_center

    spoon_body = world.get_body(spoon_name)
    spoon_quat = lookup_orientation(spoon_name, STIR_QUATS)
    spoon_urdf_from_center = get_urdf_from_base(
        spoon_body, reference_quat=spoon_quat)  # get_urdf_from_center
    # Keeping the orientation consistent for generalization purposes

    # TODO: what happens when the base isn't flat (e.g. bowl)
    bowl_pose = get_pose(bowl_body)
    stir_z = None
    for z in np.arange(max_spoon_z, min_spoon_z, step=-0.005):
        bowl_from_stirrer = multiply(bowl_urdf_from_center, Pose(Point(z=z)),
                                     invert(spoon_urdf_from_center))
        set_pose(spoon_body, multiply(bowl_pose, bowl_from_stirrer))
        #wait_for_user()
        if pairwise_collision(bowl_body, spoon_body):
            # Want to be careful not to make contact with the base
            break
        stir_z = z
    return stir_z
def create_inverse_reachability(robot, body, table, arm, grasp_type, max_attempts=500, num_samples=500):
    tool_link = get_gripper_link(robot, arm)
    robot_saver = BodySaver(robot)
    gripper_from_base_list = []
    grasps = GET_GRASPS[grasp_type](body)

    start_time = time.time()
    while len(gripper_from_base_list) < num_samples:
        box_pose = sample_placement(body, table)
        set_pose(body, box_pose)
        grasp_pose = random.choice(grasps)
        gripper_pose = multiply(box_pose, invert(grasp_pose))
        for attempt in range(max_attempts):
            robot_saver.restore()
            base_conf = next(uniform_pose_generator(robot, gripper_pose)) #, reachable_range=(0., 1.)))
            #set_base_values(robot, base_conf)
            set_group_conf(robot, 'base', base_conf)
            if pairwise_collision(robot, table):
                continue
            grasp_conf = pr2_inverse_kinematics(robot, arm, gripper_pose) #, nearby_conf=USE_CURRENT)
            #conf = inverse_kinematics(robot, link, gripper_pose)
            if (grasp_conf is None) or pairwise_collision(robot, table):
                continue
            gripper_from_base = multiply(invert(get_link_pose(robot, tool_link)), get_base_pose(robot))
            #wait_if_gui()
            gripper_from_base_list.append(gripper_from_base)
            print('{} / {} | {} attempts | [{:.3f}]'.format(
                len(gripper_from_base_list), num_samples, attempt, elapsed_time(start_time)))
            wait_if_gui()
            break
        else:
            print('Failed to find a kinematic solution after {} attempts'.format(max_attempts))
    return save_inverse_reachability(robot, arm, grasp_type, tool_link, gripper_from_base_list)
Beispiel #7
0
 def fix_pose(self, name, pose=None, fraction=0.5):
     body = self.get_body(name)
     if pose is None:
         pose = get_pose(body)
     else:
         set_pose(body, pose)
     # TODO: can also drop in simulation
     x, y, z = point_from_pose(pose)
     roll, pitch, yaw = euler_from_quat(quat_from_pose(pose))
     quat = quat_from_euler(Euler(yaw=yaw))
     set_quat(body, quat)
     surface_name = self.get_supporting(name)
     if surface_name is None:
         return None, None
     if fraction == 0:
         new_pose = (Point(x, y, z), quat)
         return new_pose, surface_name
     surface_aabb = compute_surface_aabb(self, surface_name)
     new_z = (1 - fraction) * z + fraction * stable_z_on_aabb(
         body, surface_aabb)
     point = Point(x, y, new_z)
     set_point(body, point)
     print('{} error: roll={:.3f}, pitch={:.3f}, z-delta: {:.3f}'.format(
         name, roll, pitch, new_z - z))
     new_pose = (point, quat)
     return new_pose, surface_name
Beispiel #8
0
def mirror_robot(robot1, node_points):
    # TODO: place robots side by side or diagonal across
    set_extrusion_camera(node_points, theta=-np.pi / 3)
    #draw_pose(Pose())
    centroid = np.average(node_points, axis=0)
    centroid_pose = Pose(point=centroid)
    #draw_pose(Pose(point=centroid))

    # print(centroid)
    scale = 0.  # 0.15
    vector = get_point(robot1) - centroid
    set_pose(robot1, Pose(point=Point(*+scale * vector[:2])))
    # Inner product of end-effector z with base->centroid or perpendicular to this line
    # Partition by sides

    robot2 = load_robot()
    set_pose(
        robot2,
        Pose(point=Point(*-(2 + scale) * vector[:2]), euler=Euler(yaw=np.pi)))

    # robots = [robot1]
    robots = [robot1, robot2]
    for robot in robots:
        set_configuration(robot, DUAL_CONF)
        # joint1 = get_movable_joints(robot)[0]
        # set_joint_position(robot, joint1, np.pi / 8)
        draw_pose(get_pose(robot), length=0.25)
    return robots
Beispiel #9
0
def add_scales(task, ros_world):
    scale_stackings = {}
    holding = {grasp.obj_name for grasp in task.init_holding.values()}
    with ClientSaver(ros_world.client):
        perception = ros_world.perception
        items = sorted(set(perception.get_items()) - holding,
                       key=lambda n: get_point(ros_world.get_body(n))[1],
                       reverse=False)  # Right to left
        for i, item in enumerate(items):
            if not POUR and (get_type(item) != SCOOP_CUP):
                continue
            item_body = ros_world.get_body(item)
            scale = create_name(SCALE_TYPE, i + 1)
            with HideOutput():
                scale_body = load_pybullet(get_body_urdf(get_type(scale)),
                                           fixed_base=True)
            ros_world.perception.sim_bodies[scale] = scale_body
            ros_world.perception.sim_items[scale] = None
            item_z = stable_z(item_body, scale_body)
            scale_pose_item = Pose(
                point=Point(z=-item_z))  # TODO: relies on origin in base
            set_pose(scale_body, multiply(get_pose(item_body),
                                          scale_pose_item))
            roll, pitch, _ = get_euler(scale_body)
            set_euler(scale_body, [roll, pitch, 0])
            scale_stackings[scale] = item
        #wait_for_user()
    return scale_stackings
Beispiel #10
0
def cartesian_path_collision(body, path, obstacles, **kwargs):
    for pose in path:
        set_pose(body, pose)
        if any(
                body_pair_collision(body, obst, **kwargs)
                for obst in obstacles):
            return True
    return False
Beispiel #11
0
def pose2d_on_surface(world, entity_name, surface_name, pose2d=UNIT_POSE2D):
    x, y, yaw = pose2d
    body = world.get_body(entity_name)
    surface_aabb = compute_surface_aabb(world, surface_name)
    z = stable_z_on_aabb(body, surface_aabb)
    pose = Pose(Point(x, y, z), Euler(yaw=yaw))
    set_pose(body, pose)
    return pose
Beispiel #12
0
def main():
    parser = argparse.ArgumentParser()  # Automatically includes help
    parser.add_argument('-viewer', action='store_true', help='enable viewer.')
    args = parser.parse_args()

    connect(use_gui=True)

    with LockRenderer():
        draw_pose(unit_pose(), length=1, width=1)
        floor = create_floor()
        set_point(floor, Point(z=-EPSILON))

        table1 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2,
                              top_color=TAN, cylinder=False)
        set_point(table1, Point(y=+0.5))

        table2 = create_table(width=TABLE_WIDTH, length=TABLE_WIDTH/2, height=TABLE_WIDTH/2,
                              top_color=TAN, cylinder=False)
        set_point(table2, Point(y=-0.5))

        tables = [table1, table2]

        #set_euler(table1, Euler(yaw=np.pi/2))
        with HideOutput():
            # data_path = add_data_path()
            # robot_path = os.path.join(data_path, WSG_GRIPPER)
            robot_path = get_model_path(WSG_50_URDF)  # WSG_50_URDF | PANDA_HAND_URDF
            robot = load_pybullet(robot_path, fixed_base=True)
            #dump_body(robot)

        block1 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=RED)
        block_z = stable_z(block1, table1)
        set_point(block1, Point(y=-0.5, z=block_z))

        block2 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=GREEN)
        set_point(block2, Point(x=-0.25, y=-0.5, z=block_z))

        block3 = create_box(w=BLOCK_SIDE, l=BLOCK_SIDE, h=BLOCK_SIDE, color=BLUE)
        set_point(block3, Point(x=-0.15, y=+0.5, z=block_z))

        blocks = [block1, block2, block3]

        set_camera_pose(camera_point=Point(x=-1, z=block_z+1), target_point=Point(z=block_z))

    block_pose = get_pose(block1)
    open_gripper(robot)
    tool_link = link_from_name(robot, 'tool_link')
    base_from_tool = get_relative_pose(robot, tool_link)
    #draw_pose(unit_pose(), parent=robot, parent_link=tool_link)
    grasps = get_side_grasps(block1, tool_pose=Pose(euler=Euler(yaw=np.pi/2)),
                             top_offset=0.02, grasp_length=0.03, under=False)[1:2]
    for grasp in grasps:
        gripper_pose = multiply(block_pose, invert(grasp))
        set_pose(robot, multiply(gripper_pose, invert(base_from_tool)))
        wait_for_user()

    wait_for_user('Finish?')
    disconnect()
Beispiel #13
0
def bowl_path_collision(bowl_body, body, body_path_bowl):
    bowl_pose = get_pose(bowl_body)
    with BodySaver(body):
        for cup_pose_bowl in body_path_bowl:
            cup_pose_world = multiply(bowl_pose, cup_pose_bowl)
            set_pose(body, cup_pose_world)
            if body_pair_collision(bowl_body, body):  #, collision_buffer=0.0):
                return True
    return False
Beispiel #14
0
def iterate_approach_path(world, pose, grasp, body=None):
    world_from_body = pose.get_world_from_body()
    grasp_pose = multiply(world_from_body, invert(grasp.grasp_pose))
    approach_pose = multiply(world_from_body, invert(grasp.pregrasp_pose))
    for tool_pose in interpolate_poses(grasp_pose, approach_pose):
        set_tool_pose(world, tool_pose)
        if body is not None:
            set_pose(body, multiply(tool_pose, grasp.grasp_pose))
        yield
def main():
    connect(use_gui=True)
    with HideOutput():
        pr2 = load_model(
            "models/drake/pr2_description/urdf/pr2_simplified.urdf")
    set_joint_positions(pr2, joints_from_names(pr2, PR2_GROUPS['left_arm']),
                        REST_LEFT_ARM)
    set_joint_positions(pr2, joints_from_names(pr2, PR2_GROUPS['right_arm']),
                        rightarm_from_leftarm(REST_LEFT_ARM))
    set_joint_positions(pr2, joints_from_names(pr2, PR2_GROUPS['torso']),
                        [0.2])
    dump_body(pr2)

    block = load_model(BLOCK_URDF, fixed_base=False)
    set_point(block, [2, 0.5, 1])
    target_point = point_from_pose(get_pose(block))

    # head_link = link_from_name(pr2, HEAD_LINK)
    head_joints = joints_from_names(pr2, PR2_GROUPS['head'])
    head_link = head_joints[-1]

    #max_detect_distance = 2.5
    max_register_distance = 1.0
    distance_range = (max_register_distance / 2, max_register_distance)
    base_generator = visible_base_generator(pr2, target_point, distance_range)

    base_joints = joints_from_names(pr2, PR2_GROUPS['base'])
    for i in range(5):
        base_conf = next(base_generator)
        set_joint_positions(pr2, base_joints, base_conf)

        p.addUserDebugLine(point_from_pose(get_link_pose(pr2, head_link)),
                           target_point,
                           lineColorRGB=(1, 0, 0))  # addUserDebugText
        p.addUserDebugLine(point_from_pose(
            get_link_pose(pr2, link_from_name(pr2, HEAD_LINK_NAME))),
                           target_point,
                           lineColorRGB=(0, 0, 1))  # addUserDebugText

        # head_conf = sub_inverse_kinematics(pr2, head_joints[0], HEAD_LINK, )
        head_conf = inverse_visibility(pr2, target_point)
        set_joint_positions(pr2, head_joints, head_conf)
        print(get_detections(pr2))
        # TODO: does this detect the robot sometimes?

        detect_mesh, z = get_detection_cone(pr2, block)
        detect_cone = create_mesh(detect_mesh, color=(0, 1, 0, 0.5))
        set_pose(detect_cone,
                 get_link_pose(pr2, link_from_name(pr2, HEAD_LINK_NAME)))
        view_cone = get_viewcone(depth=2.5, color=(1, 0, 0, 0.25))
        set_pose(view_cone,
                 get_link_pose(pr2, link_from_name(pr2, HEAD_LINK_NAME)))
        wait_for_user()
        remove_body(detect_cone)
        remove_body(view_cone)

    disconnect()
Beispiel #16
0
    def gen_fn(arm, obj_name, pose):
        open_width = get_max_limit(world.robot,
                                   get_gripper_joints(world.robot, arm)[0])
        obj_body = world.bodies[obj_name]

        #grasps = cycle([(grasp,)])
        grasps = cycle(grasp_gen_fn(obj_name))
        for attempt in range(max_attempts):
            try:
                grasp, = next(grasps)
            except StopIteration:
                break
            # TODO: if already successful for a grasp, continue
            set_pose(obj_body, pose)
            set_gripper_position(world.robot, arm, open_width)
            robot_saver = BodySaver(
                world.robot)  # TODO: robot might be at the wrong conf
            body_saver = BodySaver(obj_body)
            pretool_pose = multiply(pose, invert(grasp.pregrasp_pose))
            tool_pose = multiply(pose, invert(grasp.grasp_pose))
            grip_conf = solve_inverse_kinematics(world.robot,
                                                 arm,
                                                 tool_pose,
                                                 obstacles=obstacles)
            if grip_conf is None:
                continue
            #attachment = Attachment(world.robot, tool_link, get_grasp_pose(grasp), world.bodies[obj])
            # Attachments cause table collisions
            post_path = plan_waypoint_motion(
                world.robot,
                arm,
                pretool_pose,
                obstacles=obstacles,
                attachments=[],  #attachments=[attachment],
                self_collisions=collisions,
                disabled_collisions=disabled_collisions)
            if post_path is None:
                continue
            pre_conf = Conf(post_path[-1])
            pre_path = post_path[::-1]
            post_conf = pre_conf
            control = Control({
                'action':
                'pick',
                'objects': [obj_name],
                'context':
                Context(savers=[robot_saver, body_saver], attachments={}),
                'commands': [
                    ArmTrajectory(arm, pre_path, dialation=2.),
                    GripperCommand(arm, grasp.grasp_width,
                                   effort=grasp.effort),
                    Attach(arm, obj_name, effort=grasp.effort),
                    ArmTrajectory(arm, post_path, dialation=2.),
                ],
            })
            yield (grasp, pre_conf, post_conf, control)
Beispiel #17
0
 def test(obj1, pose1, obj2, pose2):
     if not collisions or (obj1 == obj2):
         return False
     body1 = world.bodies[obj1]
     set_pose(body1, pose1)
     body2 = world.bodies[obj2]
     set_pose(body2, pose2)
     return body_pair_collision(body1,
                                body2,
                                collision_buffer=collision_buffer)
Beispiel #18
0
    def gen_fn(arm, bowl_name, bowl_pose, stirrer_name, grasp):
        if bowl_name == stirrer_name:
            return
        bowl_body = world.bodies[bowl_name]
        attachment = get_grasp_attachment(world, arm, grasp)
        feature = get_stir_feature(world, bowl_name, stirrer_name)

        parameter_generator = parameter_fn(world, feature)
        if revisit:
            parameter_generator = cycle(parameter_generator)
        for parameter in parameter_generator:
            for _ in range(max_attempts):
                set_gripper_position(world.robot, arm, grasp.grasp_width)
                set_pose(bowl_body, bowl_pose)
                stirrer_path_bowl = sample_stir_trajectory(
                    world, feature, parameter)
                rotate_bowl = Pose(euler=Euler(
                    yaw=random.uniform(-np.pi, np.pi)))
                stirrer_path = [
                    multiply(bowl_pose, invert(rotate_bowl), cup_pose_bowl)
                    for cup_pose_bowl in stirrer_path_bowl
                ]
                #visualize_cartesian_path(world.get_body(stirrer_name), stirrer_path)
                arm_path = plan_attachment_motion(
                    world.robot,
                    arm,
                    attachment,
                    stirrer_path,
                    obstacles=set(obstacles) - {bowl_body},
                    self_collisions=collisions,
                    disabled_collisions=disabled_collisions,
                    collision_buffer=collision_buffer,
                    attachment_collisions=False)
                if arm_path is None:
                    continue
                pre_conf = Conf(arm_path[0])
                post_conf = Conf(arm_path[-1])
                control = Control({
                    'action':
                    'stir',
                    'objects': [bowl_name, stirrer_name],
                    'feature':
                    feature,
                    'parameter':
                    parameter,
                    'context':
                    Context(
                        savers=[BodySaver(world.robot)
                                ],  # TODO: robot might be at the wrong conf
                        attachments={stirrer_name: attachment}),
                    'commands': [
                        ArmTrajectory(arm, arm_path),
                    ],
                })
                yield (pre_conf, post_conf, control)
Beispiel #19
0
def compute_grasp_width(robot, arm, body, grasp_pose, **kwargs):
    gripper_joints = get_gripper_joints(robot, arm)
    tool_link = link_from_name(robot, TOOL_FRAMES[arm])
    tool_pose = get_link_pose(robot, tool_link)
    body_pose = multiply(tool_pose, grasp_pose)
    set_pose(body, body_pose)
    return close_until_collision(robot,
                                 gripper_joints,
                                 bodies=[body],
                                 max_distance=0.0,
                                 **kwargs)
Beispiel #20
0
def check_initial_collisions(world, obj_name, obst_names=[], **kwargs):
    obj_body = world.bodies[obj_name]
    for obst_name in obst_names:
        if obj_name == obst_name:
            continue
        obst_body = world.bodies[obst_name]
        set_pose(obst_body, world.initial_poses[obst_name])
        if body_pair_collision(obj_body, obst_body, **kwargs):
            #print(obj_name, obst_name)
            return True
    return False
Beispiel #21
0
    def _create_robot(self):
        with ClientSaver(self.client):
            with HideOutput():
                pr2_path = os.path.join(get_models_path(), PR2_URDF)
                self.pr2 = load_pybullet(pr2_path, fixed_base=True)

            # Base link is the origin
            base_pose = get_link_pose(self.robot,
                                      link_from_name(self.robot, BASE_FRAME))
            set_pose(self.robot, invert(base_pose))
        return self.pr2
Beispiel #22
0
def visualize_cartesian_path(body, pose_path):
    for i, pose in enumerate(pose_path):
        set_pose(body, pose)
        print('{}/{}) continue?'.format(i, len(pose_path)))
        wait_for_user()
    handles = draw_pose(get_pose(body))
    handles.extend(draw_aabb(get_aabb(body)))
    print('Finish?')
    wait_for_user()
    for h in handles:
        remove_debug(h)
Beispiel #23
0
def move_occluding(world):
    # Prevent obstruction by other objects
    # TODO: this is a bit of a hack due to pybullet
    world.set_base_conf([-5.0, 0, 0])
    for joint in world.kitchen_joints:
        joint_name = get_joint_name(world.kitchen, joint)
        if joint_name in DRAWERS:
            world.open_door(joint)
        else:
            world.close_door(joint)
    for name in world.movable:
        set_pose(world.get_body(name), Pose(Point(z=-5.0)))
Beispiel #24
0
def main(display='execute'): # control | execute | step
    # One of the arm's gantry carriage is fixed when the other is moving.
    connect(use_gui=True)
    set_camera(yaw=-90, pitch=-40, distance=10, target_position=(0, 7.5, 0))
    draw_pose(unit_pose(), length=1.0)
    disable_real_time()

    with HideOutput():
        root_directory = os.path.dirname(os.path.abspath(__file__))
        robot = load_pybullet(os.path.join(root_directory, ETH_RFL_URDF), fixed_base=True)
    # floor = load_model('models/short_floor.urdf')
    block = load_model(BLOCK_URDF, fixed_base=False)
    #link = link_from_name(robot, 'gantry_base_link')
    #print(get_aabb(robot, link))

    block_x = -0.2
    #block_y = 1 if ARM == 'right' else 13.5
    #block_x = 10
    block_y = 5.

    # set_pose(floor, Pose(Point(x=floor_x, y=1, z=1.3)))
    # set_pose(block, Pose(Point(x=floor_x, y=0.6, z=stable_z(block, floor))))
    set_pose(block, Pose(Point(x=block_x, y=block_y, z=3.5)))
    # set_default_camera()
    dump_world()

    #print(get_camera())
    saved_world = WorldSaver()
    with LockRenderer():
        command = plan(robot, block, fixed=[], teleport=False) # fixed=[floor],
    if (command is None) or (display is None):
        print('Unable to find a plan! Quit?')
        wait_for_interrupt()
        disconnect()
        return

    saved_world.restore()
    update_state()
    print('{}?'.format(display))
    wait_for_interrupt()
    if display == 'control':
        enable_gravity()
        command.control(real_time=False, dt=0)
    elif display == 'execute':
        command.refine(num_steps=10).execute(time_step=0.002)
    elif display == 'step':
        command.step()
    else:
        raise ValueError(display)

    print('Quit?')
    wait_for_interrupt()
    disconnect()
Beispiel #25
0
 def load_body(self, name, pose=None, fixed_base=False):
     assert name not in self.sim_bodies
     ty = get_type(name)
     with ClientSaver(self.client):
         with HideOutput():
             body = load_cup_bowl(ty)
             if body is None:
                 body = load_pybullet(get_body_urdf(name),
                                      fixed_base=fixed_base)
         if pose is not None:
             set_pose(body, pose)
         self.sim_bodies[name] = body
         return body
Beispiel #26
0
def parse_region(region):
    lower = np.min(region['hull'], axis=0)
    upper = np.max(region['hull'], axis=0)
    x, y = (lower + upper) / 2.
    w, h = (upper - lower)  # / 2.
    geom = get_box_geometry(w, h, 1e-3)
    collision_id, visual_id = create_shape(geom,
                                           pose=Pose(Point(x, y)),
                                           color=parse_color(region['color']))
    #region_id = create_body(NULL_ID, visual_id)
    region_id = create_body(collision_id, visual_id)
    set_pose(region_id, parse_pose(region))
    return region_id
Beispiel #27
0
def add_table(world, use_surface=False):
    # Use the table in simulation to ensure no penetration
    if use_surface:
        # TODO: note whether the convex hull image was clipped (only partial)
        table_mesh = rectangular_mesh(width=0.6, length=1.2)
        color = apply_alpha(COLORS['tan'])
        table_body = create_mesh(table_mesh, under=True, color=color)
        set_pose(table_body, TABLE_POSE)
        world.perception.sim_bodies[TABLE_NAME] = table_body
        world.perception.sim_surfaces[TABLE_NAME] = None
    else:
        table_body = world.perception.add_surface(TABLE_NAME, TABLE_POSE)
    return table_body
Beispiel #28
0
    def gen_fn(index, pose, grasp):
        body = brick_from_index[index].body
        set_pose(body, pose.value)

        obstacles = list(obstacle_from_name.values())  # + [body]
        collision_fn = get_collision_fn(
            robot,
            movable_joints,
            obstacles=obstacles,
            attachments=[],
            self_collisions=SELF_COLLISIONS,
            disabled_collisions=disabled_collisions,
            custom_limits=get_custom_limits(robot))
        attach_pose = multiply(pose.value, invert(grasp.attach))
        approach_pose = multiply(attach_pose, (approach_vector, unit_quat()))
        # approach_pose = multiply(pose.value, invert(grasp.approach))
        for _ in range(max_attempts):
            if USE_IKFAST:
                attach_conf = sample_tool_ik(robot, attach_pose)
            else:
                set_joint_positions(robot, movable_joints,
                                    sample_fn())  # Random seed
                attach_conf = inverse_kinematics(robot, tool_link, attach_pose)
            if (attach_conf is None) or collision_fn(attach_conf):
                continue
            set_joint_positions(robot, movable_joints, attach_conf)
            #if USE_IKFAST:
            #    approach_conf = sample_tool_ik(robot, approach_pose, nearby_conf=attach_conf)
            #else:
            approach_conf = inverse_kinematics(robot, tool_link, approach_pose)
            if (approach_conf is None) or collision_fn(approach_conf):
                continue
            set_joint_positions(robot, movable_joints, approach_conf)
            path = plan_direct_joint_motion(
                robot,
                movable_joints,
                attach_conf,
                obstacles=obstacles,
                self_collisions=SELF_COLLISIONS,
                disabled_collisions=disabled_collisions)
            if path is None:  # TODO: retreat
                continue
            #path = [approach_conf, attach_conf]
            attachment = Attachment(robot, tool_link, grasp.attach, body)
            traj = MotionTrajectory(robot,
                                    movable_joints,
                                    path,
                                    attachments=[attachment])
            yield approach_conf, traj
            break
Beispiel #29
0
def visualize_learned_pours(learner, bowl_type='blue_bowl', cup_type='red_cup', num_steps=None):
    learner.query_type = REJECTION # BEST | REJECTION | STRADDLE
    learner.validity_learner = None

    world = create_world()
    #add_obstacles()
    #environment = get_bodies()

    world.bodies[bowl_type] = load_cup_bowl(bowl_type)
    world.bodies[cup_type] = load_cup_bowl(cup_type)
    feature = get_pour_feature(world, bowl_type, cup_type)
    draw_pose(get_pose(world.get_body(bowl_type)), length=0.2)
    # TODO: sample different sizes

    print('Feature:', feature)
    for parameter in learner.parameter_generator(world, feature, valid=False):
        handles = []
        print('Parameter:', parameter)
        valid = is_valid_pour(world, feature, parameter)
        score = learner.score(feature, parameter)
        x = learner.func.x_from_feature_parameter(feature, parameter)
        [prediction] = learner.predict_x(np.array([x]), noise=True)
        print('Valid: {} | Mean: {:.3f} | Var: {:.3f} | Score: {:.3f}'.format(
            valid, prediction['mean'], prediction['variance'], score))

        #fraction = rescale(clip(prediction['mean'], *DEFAULT_INTERVAL), DEFAULT_INTERVAL, new_interval=(0, 1))
        #color = (1 - fraction) * np.array(RED) + fraction * np.array(GREEN)
        #set_color(world.get_body(cup_type), apply_alpha(color, alpha=0.25))
        # TODO: overlay many cups at different poses
        bowl_from_pivot = get_bowl_from_pivot(world, feature, parameter)
        #handles.extend(draw_pose(bowl_from_pivot))
        handles.extend(draw_point(point_from_pose(bowl_from_pivot), color=BLACK))

        # TODO: could label bowl, cup dimensions
        path, _ = pour_path_from_parameter(world, feature, parameter, cup_yaw=0)
        for p1, p2 in safe_zip(path[:-1], path[1:]):
            handles.append(add_line(point_from_pose(p1), point_from_pose(p2), color=RED))

        if num_steps is not None:
            path = path[:num_steps]
        for i, pose in enumerate(path[::-1]):
            #step_handles = draw_pose(pose, length=0.1)
            #step_handles = draw_point(point_from_pose(pose), color=BLACK)
            set_pose(world.get_body(cup_type), pose)
            print('Step {}/{}'.format(i+1, len(path)))
            wait_for_user()
            #remove_handles(step_handles)
        remove_handles(handles)
Beispiel #30
0
def test_grasps(robot, block):
    for arm in ARMS:
        gripper_joints = get_gripper_joints(robot, arm)
        tool_link = link_from_name(robot, TOOL_LINK.format(arm))
        tool_pose = get_link_pose(robot, tool_link)
        #handles = draw_pose(tool_pose)
        #grasps = get_top_grasps(block, under=True, tool_pose=unit_pose())
        grasps = get_side_grasps(block, under=True, tool_pose=unit_pose())
        for i, grasp_pose in enumerate(grasps):
            block_pose = multiply(tool_pose, grasp_pose)
            set_pose(block, block_pose)
            close_until_collision(robot, gripper_joints, bodies=[block], open_conf=get_open_positions(robot, arm),
                                  closed_conf=get_closed_positions(robot, arm))
            handles = draw_pose(block_pose)
            wait_if_gui('Grasp {}'.format(i))
            remove_handles(handles)