Beispiel #1
0
    def from_config(cls, cp, section, variable_args):
        """Returns a distribution based on a configuration file.

        The parameters for the distribution are retrieved from the section
        titled "[`section`-`variable_args`]" in the config file. By default,
        only the name of the distribution (`uniform_angle`) needs to be
        specified. This will results in a uniform prior on `[0, 2pi)`. To
        make the domain cyclic, add `cyclic_domain =`. To specify boundaries
        that are not `[0, 2pi)`, add `(min|max)-var` arguments, where `var`
        is the name of the variable.

        For example, this will initialize a variable called `theta` with a
        uniform distribution on `[0, 2pi)` without cyclic boundaries:

        .. code-block:: ini

            [{section}-theta]
            name = uniform_angle

        This will make the domain cyclic on `[0, 2pi)`:

        .. code-block:: ini

            [{section}-theta]
            name = uniform_angle
            cyclic_domain =

        Parameters
        ----------
        cp : pycbc.workflow.WorkflowConfigParser
            A parsed configuration file that contains the distribution
            options.
        section : str
            Name of the section in the configuration file.
        variable_args : str
            The names of the parameters for this distribution, separated by
            ``VARARGS_DELIM``. These must appear in the "tag" part
            of the section header.

        Returns
        -------
        UniformAngle
            A distribution instance from the pycbc.inference.prior module.
        """
        # we'll retrieve the setting for cyclic_domain directly
        additional_opts = {
            'cyclic_domain':
            cp.has_option_tag(section, 'cyclic_domain', variable_args)
        }
        return bounded.bounded_from_config(cls,
                                           cp,
                                           section,
                                           variable_args,
                                           bounds_required=False,
                                           additional_opts=additional_opts)
Beispiel #2
0
    def from_config(cls, cp, section, variable_args):
        """Returns a distribution based on a configuration file.

        The parameters for the distribution are retrieved from the section
        titled "[`section`-`variable_args`]" in the config file. By default,
        only the name of the distribution (`uniform_angle`) needs to be
        specified. This will results in a uniform prior on `[0, 2pi)`. To
        make the domain cyclic, add `cyclic_domain =`. To specify boundaries
        that are not `[0, 2pi)`, add `(min|max)-var` arguments, where `var`
        is the name of the variable.

        For example, this will initialize a variable called `theta` with a
        uniform distribution on `[0, 2pi)` without cyclic boundaries:

        .. code-block:: ini

            [{section}-theta]
            name = uniform_angle

        This will make the domain cyclic on `[0, 2pi)`:

        .. code-block:: ini

            [{section}-theta]
            name = uniform_angle
            cyclic_domain =

        Parameters
        ----------
        cp : pycbc.workflow.WorkflowConfigParser
            A parsed configuration file that contains the distribution
            options.
        section : str
            Name of the section in the configuration file.
        variable_args : str
            The names of the parameters for this distribution, separated by
            ``VARARGS_DELIM``. These must appear in the "tag" part
            of the section header.

        Returns
        -------
        UniformAngle
            A distribution instance from the pycbc.inference.prior module.
        """
        # we'll retrieve the setting for cyclic_domain directly
        additional_opts = {'cyclic_domain': cp.has_option_tag(section,
                                            'cyclic_domain', variable_args)}
        return bounded.bounded_from_config(cls, cp, section, variable_args,
                                           bounds_required=False,
                                           additional_opts=additional_opts)
Beispiel #3
0
    def from_config(cls, cp, section, variable_args):
        """Returns a Gaussian distribution based on a configuration file. The
        parameters for the distribution are retrieved from the section titled
        "[`section`-`variable_args`]" in the config file.

        Boundary arguments should be provided in the same way as described in
        `get_param_bounds_from_config`. In addition, the mean and variance of
        each parameter can be specified by setting `{param}_mean` and
        `{param}_var`, respectively. For example, the following would create a
        truncated Gaussian distribution between 0 and 6.28 for a parameter
        called `phi` with mean 3.14 and variance 0.5 that is cyclic:

        .. code-block:: ini

            [{section}-{tag}]
            min-phi = 0
            max-phi = 6.28
            phi_mean = 3.14
            phi_var = 0.5
            cyclic =

        Parameters
        ----------
        cp : pycbc.workflow.WorkflowConfigParser
            A parsed configuration file that contains the distribution
            options.
        section : str
            Name of the section in the configuration file.
        variable_args : str
            The names of the parameters for this distribution, separated by
            `prior.VARARGS_DELIM`. These must appear in the "tag" part
            of the section header.

        Returns
        -------
        Gaussain
            A distribution instance from the pycbc.inference.prior module.
        """
        return bounded.bounded_from_config(cls,
                                           cp,
                                           section,
                                           variable_args,
                                           bounds_required=False)
Beispiel #4
0
    def from_config(cls, cp, section, variable_args):
        """Returns a distribution based on a configuration file.

        The parameters
        for the distribution are retrieved from the section titled
        "[`section`-`variable_args`]" in the config file.

        The file to construct the distribution from must be provided by setting
        `filename`. Boundary arguments can be provided in the same way as
        described in `get_param_bounds_from_config`.

        .. code-block:: ini

            [{section}-{tag}]
            name = fromfile
            filename = ra_prior.hdf
            min-ra = 0
            max-ra = 6.28

        Parameters
        ----------
        cp : pycbc.workflow.WorkflowConfigParser
            A parsed configuration file that contains the distribution
            options.
        section : str
            Name of the section in the configuration file.
        variable_args : str
            The names of the parameters for this distribution, separated by
            `prior.VARARGS_DELIM`. These must appear in the "tag" part
            of the section header.

        Returns
        -------
        BoundedDist
            A distribution instance from the pycbc.inference.prior module.
        """
        return bounded.bounded_from_config(cls,
                                           cp,
                                           section,
                                           variable_args,
                                           bounds_required=False)
Beispiel #5
0
    def from_config(cls, cp, section, variable_args):
        """Returns a Gaussian distribution based on a configuration file. The
        parameters for the distribution are retrieved from the section titled
        "[`section`-`variable_args`]" in the config file.

        Boundary arguments should be provided in the same way as described in
        `get_param_bounds_from_config`. In addition, the mean and variance of
        each parameter can be specified by setting `{param}_mean` and
        `{param}_var`, respectively. For example, the following would create a
        truncated Gaussian distribution between 0 and 6.28 for a parameter
        called `phi` with mean 3.14 and variance 0.5 that is cyclic:

        .. code-block:: ini

            [{section}-{tag}]
            min-phi = 0
            max-phi = 6.28
            phi_mean = 3.14
            phi_var = 0.5
            cyclic =

        Parameters
        ----------
        cp : pycbc.workflow.WorkflowConfigParser
            A parsed configuration file that contains the distribution
            options.
        section : str
            Name of the section in the configuration file.
        variable_args : str
            The names of the parameters for this distribution, separated by
            `prior.VARARGS_DELIM`. These must appear in the "tag" part
            of the section header.

        Returns
        -------
        Gaussain
            A distribution instance from the pycbc.inference.prior module.
        """
        return bounded.bounded_from_config(cls, cp, section, variable_args,
                                                  bounds_required=False)
Beispiel #6
0
    def from_config(cls, cp, section, variable_args):
        """Returns a distribution based on a configuration file.

        The parameters
        for the distribution are retrieved from the section titled
        "[`section`-`variable_args`]" in the config file.

        The file to construct the distribution from must be provided by setting
        `filename`. Boundary arguments can be provided in the same way as
        described in `get_param_bounds_from_config`.

        .. code-block:: ini

            [{section}-{tag}]
            name = fromfile
            filename = ra_prior.hdf
            min-ra = 0
            max-ra = 6.28

        Parameters
        ----------
        cp : pycbc.workflow.WorkflowConfigParser
            A parsed configuration file that contains the distribution
            options.
        section : str
            Name of the section in the configuration file.
        variable_args : str
            The names of the parameters for this distribution, separated by
            `prior.VARARGS_DELIM`. These must appear in the "tag" part
            of the section header.

        Returns
        -------
        BoundedDist
            A distribution instance from the pycbc.inference.prior module.
        """
        return bounded.bounded_from_config(cls, cp, section, variable_args,
                                           bounds_required=False)
Beispiel #7
0
    def from_config(cls, cp, section, variable_args):
        """Returns a distribution based on a configuration file. The parameters
        for the distribution are retrieved from the section titled
        "[`section`-`variable_args`]" in the config file.

        Parameters
        ----------
        cp : pycbc.workflow.WorkflowConfigParser
            A parsed configuration file that contains the distribution
            options.
        section : str
            Name of the section in the configuration file.
        variable_args : str
            The names of the parameters for this distribution, separated by
            `prior.VARARGS_DELIM`. These must appear in the "tag" part
            of the section header.

        Returns
        -------
        UniformAngle
            A distribution instance from the pycbc.inference.prior module.
        """
        return bounded.bounded_from_config(cls, cp, section, variable_args,
                                           bounds_required=False)