def GetMatch(waveform0p, waveform1p, psd_file, f_low=30., freq_step=4):
    flen = max(len(waveform0p), len(waveform1p))
    waveform0p.resize(flen)
    waveform1p.resize(flen)
    # grab and use the psd file
    my_psd = pycbc.psd.read.from_txt(filename=psd_file,
                                     length=flen,
                                     delta_f=1.0 / 4,
                                     low_freq_cutoff=f_low,
                                     is_asd_file=False)
    m, i = match(waveform0p,
                 waveform1p,
                 psd=my_psd,
                 low_frequency_cutoff=f_low)
    return m
Beispiel #2
0
def GetMatch (template0,template1, psd_file =args.psd_filename, f_low=30):
    #resize two templates
    tlen = max(len(template0),len(template1))
    template1.resize(tlen)
    template0.resize(tlen)

    #grab and use the psd file
    my_psd = pycbc.psd.read.from_txt(filename = psd_file,
                                    length = tlen,
                                    delta_f = template0.delta_f,
                                    low_freq_cutoff = f_low,
                                    is_asd_file = False)

    #calculate match
    m,i = match(template0,template1,psd=my_psd,low_frequency_cutoff=f_low)
    return m
Beispiel #3
0
def GetMatch(template0, template1, psd_file=args.psd_filename, f_low=30):
    #resize two templates
    flen = max(len(template0), len(template1))
    #template1=template1.copy()
    template1.resize(flen)
    #template0=template0.copy()
    template0.resize(flen)

    #grab and use the psd file
    #df = 1.0/template1.duration
    my_psd = pycbc.psd.read.from_txt(filename=psd_file,
                                     length=flen,
                                     delta_f=1.0 / 4,
                                     low_freq_cutoff=f_low,
                                     is_asd_file=False)

    #calculate match
    m, i = match(template0, template1, psd=my_psd, low_frequency_cutoff=f_low)
    return m
Beispiel #4
0
def compare(psd, psd_path, hep, hec, distance, f_low, f_high, approx_e, EOS_e,
            hm_path):
    if psd_type == 'aLIGOZeroDetHighPower':
        inclination = 0.0
        hhm = h5py.File(hm_path, 'r')
        EOS_m = hhm.attrs['EOS']
        grav_m1 = hhm.attrs['grav_mass1']
        grav_m2 = hhm.attrs['grav_mass2']
        s1x = hhm.attrs['spin1x']
        s1y = hhm.attrs['spin1y']
        s1z = hhm.attrs['spin1z']
        s2x = hhm.attrs['spin2x']
        s2y = hhm.attrs['spin2y']
        s2z = hhm.attrs['spin2z']
        f_lower_hhm = hhm.attrs[
            'f_lower_at_1MSUN']  #/(2.0 * lal.TWOPI * lal.MTSUN_SI*(m1+m2))
        hhm_freq = hhm.attrs['hybridize_freq']
        hhm_shift_time = hhm.attrs['shift_time']
        approx_m = hhm.attrs['approx']
        h_matchm = hhm.attrs['hybrid_match']
        sim_name = hhm.attrs['sim_name']
        hhm.close()
        hmp, hmc = get_td_waveform(approximant='NR_hdf5',
                                   numrel_data=hm_path,
                                   mass1=grav_m1,
                                   mass2=grav_m2,
                                   spin1z=s1z,
                                   spin1x=s1x,
                                   spin1y=s1y,
                                   spin2z=s2z,
                                   spin2x=s2x,
                                   spin2y=s2y,
                                   delta_t=delta_t,
                                   distance=distance,
                                   f_lower=f_lower_hhm,
                                   inclination=inclination)
        ### multiply by stupid pycbc factor
        hmp = hmp * pycbc_factor
        hmc = hmc * pycbc_factor
        ### set a constant t_len. We do this because all the numerical waveforms will be padded to this length and a new fft plan will not be needed. Basically this makes everything
        ### MUCH faster.
        t_len = 300000
        hep.resize(t_len)
        hmp.resize(t_len)
        #Generate the aLIGO ZDHP PSD
        delta_f = 1.0 / hmp.duration
        f_len = t_len / 2 + 1
        psd = aLIGOZeroDetHighPower(f_len, delta_f, f_low)
        #calculate L2 distance
        l2_distance = hy.delta_h(hep, hmp)
        #calculate snr and match values
        hep_hmp_match, index = matchedfilter.match(
            hep,
            hmp,
            psd=psd,
            low_frequency_cutoff=f_low,
            high_frequency_cutoff=f_high)
        hmp_norm = matchedfilter.sigmasq(hmp,
                                         psd=psd,
                                         low_frequency_cutoff=f_low,
                                         high_frequency_cutoff=f_high)
        overlap = matchedfilter.overlap(hep,
                                        hmp,
                                        psd=psd,
                                        low_frequency_cutoff=f_low,
                                        high_frequency_cutoff=f_high)
        mismatch = 1.0 - overlap
        data = (l2_distance, hep_hmp_match, overlap, mismatch, hmp_norm,
                h_matchm, hhm_shift_time, hhe_freq, hhm_freq, approx_e,
                approx_m, EOS_e, EOS_m, sim_name)
        return data
    elif psd_type != 'aLIGOZeroDetHighPower':
        # similar to previous section
        inclination = 0.0
        hhm = h5py.File(hm_path, 'r')
        EOS_m = hhm.attrs['EOS']
        grav_m1 = hhm.attrs['grav_mass1']
        grav_m2 = hhm.attrs['grav_mass2']
        s1x = hhm.attrs['spin1x']
        s1y = hhm.attrs['spin1y']
        s1z = hhm.attrs['spin1z']
        s2x = hhm.attrs['spin2x']
        s2y = hhm.attrs['spin2y']
        s2z = hhm.attrs['spin2z']
        f_lower_hhm = hhm.attrs[
            'f_lower_at_1MSUN']  #/(2.0 * lal.TWOPI * lal.MTSUN_SI*(m1+m2))
        hhm_freq = hhm.attrs['hybridize_freq']
        hhm_shift_time = hhm.attrs['shift_time']
        approx_m = hhm.attrs['approx']
        h_matchm = hhm.attrs['hybrid_match']
        sim_name = hhm.attrs['sim_name']
        hhm.close()
        hmp, hmc = get_td_waveform(approximant='NR_hdf5',
                                   numrel_data=hm_path,
                                   mass1=grav_m1,
                                   mass2=grav_m2,
                                   spin1z=s1z,
                                   spin1x=s1x,
                                   spin1y=s1y,
                                   spin2z=s2z,
                                   spin2x=s2x,
                                   spin2y=s2y,
                                   delta_t=delta_t,
                                   distance=distance,
                                   f_lower=f_lower_hhm,
                                   inclination=inclination)
        ### multiply by stupid pycbc factor
        hmp = hmp * pycbc_factor
        hmc = hmc * pycbc_factor
        t_len = 300000
        hep.resize(t_len)
        hmp.resize(t_len)
        #Generate the aLIGO ZDHP PSD
        delta_f = 1.0 / hmp.duration
        f_len = t_len / 2 + 1
        ### reads in a custom psd file
        psd = pycbc.psd.read.from_txt(psd_path,
                                      f_len,
                                      delta_f,
                                      f_low,
                                      is_asd_file=True)
        l2_distance = hy.delta_h(hep, hmp)
        hep_hmp_match, index = matchedfilter.match(
            hep,
            hmp,
            psd=psd,
            low_frequency_cutoff=f_low,
            high_frequency_cutoff=f_high)
        hmp_norm = matchedfilter.sigmasq(hmp,
                                         psd=psd,
                                         low_frequency_cutoff=f_low,
                                         high_frequency_cutoff=f_high)
        overlap = matchedfilter.overlap(hep,
                                        hmp,
                                        psd=psd,
                                        low_frequency_cutoff=f_low,
                                        high_frequency_cutoff=f_high)
        mismatch = 1.0 - overlap
        data = (l2_distance, hep_hmp_match, overlap, mismatch, hmp_norm,
                h_matchm, hhm_shift_time, hhe_freq, hhm_freq, approx_e,
                approx_m, EOS_e, EOS_m, sim_name)
        return data