Beispiel #1
0
def get_apastron_frequencies(hp, hc):
    '''
    Input
    -----
    hp, hc: pycbc.types.timeseries
            Plus (+) and Cross (x) polarizations

    Output:
    -------
    apastron_frequencies: numpy.array
        Frequency of GW emission at periastron at increasing values of time
    apastron_times: numpy.array
        Times at which apastron passages occur
    '''
    freq = frequency_from_polarizations(hp, hc)
    ft, ff = get_peak_freqs(-1 * freq)
    return (ft, -1 * ff)
Beispiel #2
0
def gen_waveform(iota, phi, numrel_data):
    print "I am in gen_waveform()!"

    ## FIXME(Gonghan): It seems that this variable is never used.
    global wavelabel
    wavelabel = os.path.join(savepath,
                             numrel_data.split('/')[-1].replace(".h5", ""))

    f = h5py.File(numrel_data, 'r')

    global hp, hc
    hp, hc = get_td_waveform(approximant='NR_hdf5',
                             numrel_data=numrel_data,
                             mass1=f.attrs['mass1'] * mass,
                             mass2=f.attrs['mass2'] * mass,
                             spin1z=f.attrs['spin1z'],
                             spin2z=f.attrs['spin2z'],
                             delta_t=1.0 / sample_frequency,
                             f_lower=30.,
                             inclination=iota,
                             coa_phase=phi,
                             distance=1000)

    print "in gen_waveform, have got hp, hc. iota: {}, phi: {}".format(
        iota, phi)
    print "hp:", hp
    print "hc:", hc
    f.close()

    # Taper waveform for smooth FFTs
    hp = taper_timeseries(hp, tapermethod="TAPER_START")
    hc = taper_timeseries(hc, tapermethod="TAPER_START")

    global amp, foft
    amp = wfutils.amplitude_from_polarizations(hp, hc)
    foft = wfutils.frequency_from_polarizations(hp, hc)

    # Shift time origin to merger
    global sample_times

    ## FIXME(Gonghan): Not sure how we want to define zero time.
    sample_times = amp.sample_times - amp.sample_times[np.argmax(amp)]
Beispiel #3
0
    def _get_tf_path(self, approximant='SEOBNRv4_opt', sample_rate=4096 * 4):
        """
        Get frequency track of an event based on GraceDb parameters.

        Parameters
        ----------
        approximant : str, optional
        f_lower : int, optional
        sample_rate : int, optional

        Returns
        -------
        tf_path : gwpy.timeseries.TimeSeries object
            Time series of frequency.
        """
        if not all(
                hasattr(self, x) for x in
            ['graceid', 'm1', 'm2', 's1z', 's2z', 'start_time', 'end_time']):
            return None
        hp, hc = get_td_waveform(approximant='SEOBNRv4_opt',
                                 mass1=self.m1,
                                 mass2=self.m2,
                                 spin1z=self.s1z,
                                 spin2z=self.s2z,
                                 delta_t=1.0 / sample_rate,
                                 f_lower=30,
                                 frame_axis=SIM_INSPIRAL_FRAME_AXIS_ORBITAL_L)
        foft = frequency_from_polarizations(hp, hc)
        try:
            foft = utils.trim_foft(foft)
        except:
            pass
        tf_path = TimeSeries(foft,
                             t0=self.end_time + float(foft.start_time),
                             dt=foft.delta_t)
        tf_path = tf_path.crop(self.start_time, self.end_time)
        tf_path.name = self.graceid + '_path'
        return tf_path
        for row in snglburst_table:
            if (row.snr > args.omicron_snr_thresh and 
                    omicron_start_time < row.peak_time < omicron_end_time):
                omicron_times.append(row.peak_time + row.peak_time_ns * 10**(-9))
                omicron_snr.append(row.snr)
                omicron_freq.append(row.peak_frequency)


# Generate inspiral waveform and calculate f(t) to plot on top of Omicron triggers
hp, hc = get_td_waveform(approximant='SEOBNRv2', mass1=m1, mass2=m2,
                 spin1x=0, spin1y=0, spin1z=s1z,
                 spin2x=0, spin2y=0, spin2z=s2z,
                 delta_t=(1./32768.), f_lower=30)


f = frequency_from_polarizations(hp, hc)
amp = amplitude_from_polarizations(hp, hc)
stop_idx = amp.abs_max_loc()[1]

f = f[:stop_idx]

freq = np.array(f.data)
times = np.array(f.sample_times) + cbc_end_time

logging.info('Plotting')

plt.figure(0)
cm = plt.cm.get_cmap('Reds')
plt.scatter(omicron_times,omicron_freq,c=omicron_snr,s=30,cmap=cm,linewidth=0)
plt.grid(b=True, which='both')
cbar = plt.colorbar()
                omicron_freq.append(row.peak_frequency)

# Generate inspiral waveform and calculate f(t) to plot on top of Omicron triggers
hp, hc = get_td_waveform(approximant='SEOBNRv2',
                         mass1=m1,
                         mass2=m2,
                         spin1x=0,
                         spin1y=0,
                         spin1z=s1z,
                         spin2x=0,
                         spin2y=0,
                         spin2z=s2z,
                         delta_t=(1. / 32768.),
                         f_lower=30)

f = frequency_from_polarizations(hp, hc)
amp = amplitude_from_polarizations(hp, hc)
stop_idx = amp.abs_max_loc()[1]

f = f[:stop_idx]

freq = np.array(f.data)
times = np.array(f.sample_times) + cbc_end_time

logging.info('Plotting')

plt.figure(0)
cm = plt.cm.get_cmap('Reds')
plt.scatter(omicron_times,
            omicron_freq,
            c=omicron_snr,
Beispiel #6
0
def gen_waveform(numrel_data, iota, phi):
    ## FIXME(Gonghan): It seems that wavelabel is never used.
    #     global wavelabel
    #     wavelabel=os.PATH.join(savepath, waveformName.split('/')[-1].replace(".h5",""))

    f = h5py.File(numrel_data, 'r')

    # Getting the 2-2 mode polarizations first.
    hp, hc = get_td_waveform(approximant='NR_hdf5',
                             numrel_data=numrel_data,
                             mass1=f.attrs['mass1'] * mass,
                             mass2=f.attrs['mass2'] * mass,
                             spin1z=f.attrs['spin1z'],
                             spin2z=f.attrs['spin2z'],
                             delta_t=1.0 / sample_frequency,
                             f_lower=30.,
                             inclination=iota,
                             coa_phase=phi,
                             distance=1000,
                             mode_array=[[2, 2], [2, -2]])
    # Taper waveform for smooth FFTs
    hp = taper_timeseries(hp, tapermethod="TAPER_START")
    hc = taper_timeseries(hc, tapermethod="TAPER_START")
    amp = wfutils.amplitude_from_polarizations(hp, hc)
    peakAmpTime = amp.sample_times[np.argmax(amp)]
    '''mode_array=[[2,2], [2,-2]]'''

    # Getting the full-mode waveform.
    hp, hc = get_td_waveform(approximant='NR_hdf5',
                             numrel_data=numrel_data,
                             mass1=f.attrs['mass1'] * mass,
                             mass2=f.attrs['mass2'] * mass,
                             spin1z=f.attrs['spin1z'],
                             spin2z=f.attrs['spin2z'],
                             delta_t=1.0 / sample_frequency,
                             f_lower=30.,
                             inclination=iota,
                             coa_phase=phi,
                             distance=1000)
    f.close()

    # Taper waveform for smooth FFTs
    hp = taper_timeseries(hp, tapermethod="TAPER_START")
    hc = taper_timeseries(hc, tapermethod="TAPER_START")

    amp = wfutils.amplitude_from_polarizations(hp, hc)
    foft = wfutils.frequency_from_polarizations(hp, hc)

    # Shift time origin to merger

    ## FIXME(Gonghan): Not sure how we want to define zero time.
    sample_times = amp.sample_times - peakAmpTime
    #     sample_times = amp.sample_times

    # # Trim the timeseries before the CWT
    # hp_red = hp[:int(sample_frequency)]

    return {
        "hp": hp,
        "hc": hc,
        "amp": amp,
        "foft": foft,
        "sample_times": sample_times
    }