def get_iter_stats(self, cur_epoch, cur_iter):
     mem_usage = metrics.gpu_mem_usage()
     iter_stats = {
         '_type': 'Val_iter',
         'epoch': '{}/{}'.format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         'iter': '{}/{}'.format(cur_iter + 1, self.max_iter),
         'top1_err': self.mb_top1_err.get_win_median(),
     }
     return iter_stats
 def get_epoch_stats(self, cur_epoch):
     top1_err = self.num_top1_mis / self.num_samples
     self.min_top1_err = min(self.min_top1_err, top1_err)
     mem_usage = metrics.gpu_mem_usage()
     stats = {
         '_type': 'Val_epoch',
         'epoch': '{}/{}'.format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         'top1_err': top1_err,
         'min_top1_err': self.min_top1_err
     }
     return stats
Beispiel #3
0
 def get_iter_stats(self, cur_epoch, cur_iter):
     mem_usage = metrics.gpu_mem_usage()
     iter_stats = {
         '_type': 'test_iter',
         'epoch': '{}/{}'.format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         'iter': '{}/{}'.format(cur_iter + 1, self.max_iter),
         'time_avg': self.iter_timer.average_time,
         'time_diff': self.iter_timer.diff,
         'top1_err': self.mb_top1_err.get_win_median(),
         'top5_err': self.mb_top5_err.get_win_median(),
         'mem': int(np.ceil(mem_usage))
     }
     return iter_stats
 def get_iter_stats(self, cur_epoch, cur_iter):
     mem_usage = metrics.gpu_mem_usage()
     iter_stats = {
         "_type": "test_iter",
         "epoch": "{}/{}".format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         "iter": "{}/{}".format(cur_iter + 1, self.max_iter),
         "time_avg": self.iter_timer.average_time,
         "time_diff": self.iter_timer.diff,
         "top1_err": self.mb_top1_err.get_win_median(),
         "top5_err": self.mb_top5_err.get_win_median(),
         "mem": int(np.ceil(mem_usage)),
     }
     return iter_stats
 def get_iter_stats(self, cur_epoch, cur_iter):
     eta_sec = self.iter_timer.average_time * (
         self.max_iter - (cur_epoch * self.epoch_iters + cur_iter + 1))
     eta_td = datetime.timedelta(seconds=int(eta_sec))
     mem_usage = metrics.gpu_mem_usage()
     stats = {
         '_type': 'train_iter',
         'epoch': '{}/{}'.format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         'iter': '{}/{}'.format(cur_iter + 1, self.epoch_iters),
         'top1_err': self.mb_top1_err.get_win_median(),
         'loss': self.loss.get_win_median(),
         'lr': self.lr,
     }
     return stats
 def get_epoch_stats(self, cur_epoch):
     eta_sec = self.iter_timer.average_time * (
         self.max_iter - (cur_epoch + 1) * self.epoch_iters)
     eta_td = datetime.timedelta(seconds=int(eta_sec))
     mem_usage = metrics.gpu_mem_usage()
     top1_err = self.num_top1_mis / self.num_samples
     avg_loss = self.loss_total / self.num_samples
     stats = {
         '_type': 'train_epoch',
         'epoch': '{}/{}'.format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         'top1_err': top1_err,
         'loss': avg_loss,
         'lr': self.lr,
     }
     return stats
Beispiel #7
0
 def get_epoch_stats(self, cur_epoch):
     top1_err = self.num_top1_mis / self.num_samples
     top5_err = self.num_top5_mis / self.num_samples
     self.min_top1_err = min(self.min_top1_err, top1_err)
     self.min_top5_err = min(self.min_top5_err, top5_err)
     mem_usage = metrics.gpu_mem_usage()
     stats = {
         '_type': 'test_epoch',
         'epoch': '{}/{}'.format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         'time_avg': self.iter_timer.average_time,
         'top1_err': top1_err,
         'top5_err': top5_err,
         'min_top1_err': self.min_top1_err,
         'min_top5_err': self.min_top5_err,
         'mem': int(np.ceil(mem_usage))
     }
     return stats
 def get_epoch_stats(self, cur_epoch):
     top1_err = self.num_top1_mis / self.num_samples
     top5_err = self.num_top5_mis / self.num_samples
     self.min_top1_err = min(self.min_top1_err, top1_err)
     self.min_top5_err = min(self.min_top5_err, top5_err)
     mem_usage = metrics.gpu_mem_usage()
     stats = {
         "_type": "test_epoch",
         "epoch": "{}/{}".format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         "time_avg": self.iter_timer.average_time,
         "top1_err": top1_err,
         "top5_err": top5_err,
         "min_top1_err": self.min_top1_err,
         "min_top5_err": self.min_top5_err,
         "mem": int(np.ceil(mem_usage)),
     }
     return stats
 def get_iter_stats(self, cur_epoch, cur_iter):
     eta_sec = self.iter_timer.average_time * (
         self.max_iter - (cur_epoch * self.epoch_iters + cur_iter + 1))
     eta_td = datetime.timedelta(seconds=int(eta_sec))
     mem_usage = metrics.gpu_mem_usage()
     stats = {
         "_type": "train_iter",
         "epoch": "{}/{}".format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         "iter": "{}/{}".format(cur_iter + 1, self.epoch_iters),
         "time_avg": self.iter_timer.average_time,
         "time_diff": self.iter_timer.diff,
         "eta": eta_str(eta_td),
         "top1_err": self.mb_top1_err.get_win_median(),
         "top5_err": self.mb_top5_err.get_win_median(),
         "loss": self.loss.get_win_median(),
         "lr": self.lr,
         "mem": int(np.ceil(mem_usage)),
     }
     return stats
 def get_epoch_stats(self, cur_epoch):
     eta_sec = self.iter_timer.average_time * (
         self.max_iter - (cur_epoch + 1) * self.epoch_iters)
     eta_td = datetime.timedelta(seconds=int(eta_sec))
     mem_usage = metrics.gpu_mem_usage()
     top1_err = self.num_top1_mis / self.num_samples
     top5_err = self.num_top5_mis / self.num_samples
     avg_loss = self.loss_total / self.num_samples
     stats = {
         "_type": "train_epoch",
         "epoch": "{}/{}".format(cur_epoch + 1, cfg.OPTIM.MAX_EPOCH),
         "time_avg": self.iter_timer.average_time,
         "eta": eta_str(eta_td),
         "top1_err": top1_err,
         "top5_err": top5_err,
         "loss": avg_loss,
         "lr": self.lr,
         "mem": int(np.ceil(mem_usage)),
     }
     return stats