Beispiel #1
0
def test_svd_ncomponents_lt_nfeatures():
    # smoke test for input where a dimension is 1
    rng = np.random.mtrand.RandomState(42)

    model = CMF(n_components=3, solver="newton", x_init='svd', y_init='svd',
                U_non_negative=False, V_non_negative=False, Z_non_negative=False,
                random_state=0, max_iter=1)
    X = rng.randn(6, 4)
    Y = rng.randn(4, 2)
    model.fit(X, Y)
Beispiel #2
0
def test_fit_close(solver):
    rng = np.random.mtrand.RandomState(42)
    # Test that the fit is not too far away
    for rndm_state in [0]:
        pnmf = CMF(n_components=5, solver=solver, x_init='nndsvdar', y_init='nndsvdar',
                   random_state=rndm_state, max_iter=1000)
        X = np.abs(rng.randn(6, 5))
        Y = np.abs(rng.randn(5, 6))
        assert_less(pnmf.fit(X, Y).reconstruction_err_, 0.1)
Beispiel #3
0
def test_transform_after_fit(solver):
    rng = np.random.mtrand.RandomState(36)
    X = rng.randn(7, 5)
    Y = rng.randn(5, 3)

    fit_model = CMF(n_components=2, solver=solver, x_init='random', y_init='random',
                    U_non_negative=False, V_non_negative=False, Z_non_negative=False,
                    random_state=0, max_iter=100)
    fit_transform_model = clone(fit_model)

    fit_model.fit(X, Y)
    U_f, V_f, Z_f = fit_model.transform(X, Y)
    U_ft, V_ft, Z_ft = fit_transform_model.fit_transform(X, Y)

    # the initalizations will differ, so the results may also differ slightly
    assert_array_almost_equal(U_f, U_ft, decimal=2)
    assert_array_almost_equal(V_f, V_ft, decimal=2)
    assert_array_almost_equal(Z_f, Z_ft, decimal=2)
Beispiel #4
0
def test_stochastic_newton_solver():
    rng = np.random.mtrand.RandomState(42)

    model = CMF(n_components=5, solver="newton", x_init='svd', y_init='svd',
                U_non_negative=False, V_non_negative=False, Z_non_negative=False, alpha=0.5,
                sg_sample_ratio=0.5, random_state=0, max_iter=1000)
    X = rng.randn(6, 5)
    Y = rng.randn(5, 6)
    assert_less(model.fit(X, Y).reconstruction_err_, 0.1)
Beispiel #5
0
def test_recover_low_rank_matrix(solver):
    rng = np.random.mtrand.RandomState(42)
    # Test that the fit is not too far away
    pnmf = CMF(5, solver=solver, x_init='nndsvdar', y_init='nndsvdar',
               random_state=0, max_iter=1000)
    U = np.abs(rng.randn(10, 5))
    V = np.abs(rng.randn(8, 5))
    Z = np.abs(rng.randn(6, 5))
    X = np.dot(U, V.T)
    Y = np.dot(V, Z.T)
    assert_less(pnmf.fit(X, Y).reconstruction_err_, 1.0)
Beispiel #6
0
def test_stochastic_newton_solver_sparse_input_close():
    rng = np.random.mtrand.RandomState(42)

    model = CMF(n_components=5, solver="newton", x_init='svd', y_init='svd',
                U_non_negative=False, V_non_negative=False, Z_non_negative=False, alpha=0.5,
                sg_sample_ratio=0.5, random_state=0, max_iter=1000)
    A = rng.randn(6, 5)
    B = rng.randn(5, 6)
    A_sparse = csr_matrix(A)
    B_sparse = csr_matrix(B)

    assert_less(model.fit(A_sparse, B_sparse).reconstruction_err_, 0.1)