Beispiel #1
0
def distribute(
    computation_graph: ComputationsFactorGraph,
    agentsdef: Iterable[AgentDef],
    hints=None,
    computation_memory: Callable[[ComputationNode], float] = None,
    communication_load: Callable[[ComputationNode, str], float] = None,
    timeout=600,  # Max 10 min
) -> Distribution:
    if computation_memory is None or communication_load is None:
        raise ImpossibleDistributionException(
            "oilp_secp_fgdp distribution requires "
            "computation_memory and link_communication functions"
        )

    mapping = defaultdict(lambda: [])
    agents_capa = {a.name: a.capacity for a in agentsdef}
    variable_computations, factor_computations = [], []
    for comp in computation_graph.nodes:
        if isinstance(comp, VariableComputationNode):
            variable_computations.append(comp.name)
        elif isinstance(comp, FactorComputationNode):
            factor_computations.append(comp.name)
        else:
            raise ImpossibleDistributionException(
                f"Error: {comp} is neither a factor nor a variable computation"
            )
    # actuators variables and cost factor on the corresponding agent:
    for variable in variable_computations[:]:

        for agent in agentsdef:
            if agent.hosting_cost(variable) == 0:
                # Found an actuator variable, host it on the agent
                mapping[agent.name].append(variable)
                variable_computations.remove(variable)
                agents_capa[agent.name] -= computation_memory(
                    computation_graph.computation(variable)
                )
                # search for the cost factor, if any, and host it on the same agent.
                for factor in factor_computations[:]:
                    if f"c_{variable}" == factor:
                        mapping[agent.name].append(factor)
                        factor_computations.remove(factor)
                        agents_capa[agent.name] -= computation_memory(
                            computation_graph.computation(factor)
                        )
                if agents_capa[agent.name] < 0:
                    raise ImpossibleDistributionException(
                        f"Not enough capacity on {agent} to hosts actuator {variable}: {agents_capa[agent.name]}"
                    )
                break
    logger.info(f"Actuator variables - agents: {dict(mapping)}")
    logger.info(f"Remaining capacity: {dict(agents_capa)}")

    return fg_secp_ilp(
        computation_graph,
        agentsdef,
        Distribution(mapping),
        computation_memory,
        communication_load,
    )
    def test_comm(self):
        f1 = relation_from_str('f1', 'v1 * 0.5 + v2 + v3', [v1, v2, v3])
        cv1 = VariableComputationNode(v1, ['f1'])
        cv2 = VariableComputationNode(v2, ['f1'])
        cv3 = VariableComputationNode(v3, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1, cv2, cv3], [cf1])

        a1 = AgentDef("a1",
                      capacity=200,
                      default_hosting_cost=1,
                      hosting_costs={
                          "v1": 0,
                          "v2": 0
                      })

        a2 = AgentDef("a2", capacity=200, default_hosting_cost=1)

        a1.capacity = 1000
        agent_mapping = distribute(cg, [a1, a2],
                                   hints=None,
                                   computation_memory=ms.computation_memory,
                                   communication_load=ms.communication_load)

        # As there is enough capacity on a1, factor f1 must go there (where
        # most of its variable are already hosted) while v3 must go on a2 to
        # make sure that all agents are used
        self.assertEqual(agent_mapping.agent_for('f1'), 'a1')
        self.assertEqual(agent_mapping.agent_for('v3'), 'a2')
    def test_respect_must_host_all_computation_fixed(self):

        f1 = relation_from_str('f1', 'v1 * 0.5 + v2', [v1, v2])
        cv1 = VariableComputationNode(v1, ['f1'])
        cv2 = VariableComputationNode(v2, [])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1, cv2], [cf1])

        a1 = AgentDef("a1",
                      capacity=200,
                      default_hosting_cost=1,
                      hosting_costs={
                          "f1": 0,
                          "v1": 0
                      })

        a2 = AgentDef("a2",
                      capacity=200,
                      default_hosting_cost=1,
                      hosting_costs={"v2": 0})

        agent_mapping = distribute(cg, [a1, a2],
                                   hints=None,
                                   computation_memory=ms.computation_memory,
                                   communication_load=ms.communication_load)

        self.assertEqual(agent_mapping.agent_for('f1'), 'a1')
        self.assertEqual(agent_mapping.agent_for('v1'), 'a1')
        self.assertEqual(agent_mapping.agent_for('v2'), 'a2')
Beispiel #4
0
    def test_host_on_highest_dependent_agent(self):
        d1 = VariableDomain('d1', '', [1, 2, 3, 5])

        v1 = Variable('v1', d1)
        v2 = Variable('v2', d1)
        v3 = Variable('v3', d1)
        f1 = relation_from_str('f1', 'v1 + v2', [v1, v2])
        f2 = relation_from_str('f2', 'v1 - v2 + v3', [v1, v2, v3])
        cv1 = VariableComputationNode(v1, ['f1', 'f2'])
        cv2 = VariableComputationNode(v2, ['f1', 'f2'])
        cv3 = VariableComputationNode(v3, ['f2'])
        cf1 = FactorComputationNode(f1)
        cf2 = FactorComputationNode(f2)
        cg = ComputationsFactorGraph([cv1, cv2, cv3], [cf1, cf2])

        hints = DistributionHints(must_host={'a1': ['v1'], 'a2': ['v2', 'v3']})

        # we must set the capacity to make sure that a2 cannot take f1
        agents = [AgentDef('a{}'.format(i), capacity=41) for i in range(1, 11)]

        agent_mapping = distribute(cg,
                                   agents,
                                   hints,
                                   computation_memory=lambda x: 10)

        print(agent_mapping)
        self.assertEqual(agent_mapping.agent_for('f1'), 'a1')
        self.assertEqual(agent_mapping.agent_for('f2'), 'a2')

        self.assertTrue(is_all_hosted(cg, agent_mapping))
    def test_respect_must_host_all_computation_invalid(self):

        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        a1 = AgentDef("a1",
                      capacity=200,
                      default_hosting_cost=1,
                      hosting_costs={
                          "f1": 0,
                          "v1": 0
                      })

        a2 = AgentDef("a2", capacity=200, default_hosting_cost=1)

        # These hints lead to an impossible distribution, as ilp-fgdp requires
        # each agent to host at least one computation. Here Both
        # computations are hosted on a1 and there is no computation
        # available for a2 !
        self.assertRaises(ImpossibleDistributionException,
                          distribute,
                          cg, [a1, a2],
                          hints=None,
                          computation_memory=ms.computation_memory,
                          communication_load=ms.communication_load)
    def test_comm_not_enough_place(self):
        f1 = relation_from_str('f1', 'v1 * 0.5 + v2 + v3', [v1, v2, v3])
        cv1 = VariableComputationNode(v1, ['f1'])
        cv2 = VariableComputationNode(v2, ['f1'])
        cv3 = VariableComputationNode(v3, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1, cv2, cv3], [cf1])

        a1 = AgentDef("a1",
                      capacity=200,
                      default_hosting_cost=1,
                      hosting_costs={
                          "v1": 0,
                          "v2": 0
                      })

        a2 = AgentDef("a2", capacity=200, default_hosting_cost=1)

        a1.capacity = 15
        agent_mapping = distribute(cg, [a1, a2],
                                   hints=None,
                                   computation_memory=ms.computation_memory,
                                   communication_load=ms.communication_load)

        # As there is enough not capacity on a1, factor f1 and variable v3
        # must go on a2
        self.assertEqual(agent_mapping.agent_for('f1'), 'a2')
        self.assertEqual(agent_mapping.agent_for('v3'), 'a2')
Beispiel #7
0
    def test_raises_if_methods_not_given(self):
        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        self.assertRaises(ImpossibleDistributionException, distribute, cg,
                          [Agent('a1'), Agent('a2')], hints=None)
    def test_create_ok(self):
        d1 = Domain('d1', '', [1, 2, 3, 5])
        v1 = Variable('v1', d1)
        f1 = constraint_from_str('f1', 'v1 * 0.5', [v1])

        cv1 = VariableComputationNode(v1, [f1])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])
    def test_var_fac_nolink(self):
        f1 = relation_from_str('f1', '0.5', [])
        cv1 = VariableComputationNode(v1, [])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        self.assertEqual(
            _computation_memory_in_cg('v1', cg, computation_memory), 0)
        self.assertEqual(
            _computation_memory_in_cg('f1', cg, computation_memory), 0)
    def test_fac_2var(self):
        f1 = relation_from_str('f1', 'v1 * 0.5+v2', [v1, v2])
        cv1 = VariableComputationNode(v1, ['f1'])
        cv2 = VariableComputationNode(v2, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1, cv2], [cf1])

        # size of the domain of v1 + size domain v2
        self.assertEqual(
            _computation_memory_in_cg('f1', cg, computation_memory), 8)
Beispiel #11
0
def secp_dist_objective_function(cg: ComputationsFactorGraph,
                                 communication_load, alphas, agents_names):
    # The objective function is the negated sum of the communication cost on
    # the links in the factor graph.
    return lpSum([
        -communication_load(cg.computation(link.variable_node),
                            link.factor_node) *
        alphas[((link.variable_node, link.factor_node), k)]
        for link in cg.links for k in agents_names
    ])
    def test_raise_when_not_enough_agents(self):

        d1 = VariableDomain('d1', '', [1, 2, 3, 5])

        v1 = Variable('v1', d1)
        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        self.assertRaises(ImpossibleDistributionException, distribute, cg,
                          [AgentDef('a1')])
    def test_no_hints(self):
        d1 = VariableDomain('d1', '', [1, 2, 3, 5])

        v1 = Variable('v1', d1)
        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])
        agents = [AgentDef('a1', capacity=100), AgentDef('a2', capacity=100)]
        agent_mapping = distribute(cg, agents, hints=None,
                                   computation_memory=lambda x: 10)
        self.assertTrue(agent_mapping.is_hosted(['v1', 'f1']))
    def test_var_fac_link(self):
        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        # size of the domain of v1
        self.assertEqual(
            _computation_memory_in_cg('v1', cg, computation_memory),
            4 * VARIABLE_UNIT_SIZE)
        self.assertEqual(
            _computation_memory_in_cg('f1', cg, computation_memory), 4)
    def test_obj_function(self):
        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        agents_names = ['a1', 'a2']
        alphas = _build_alphaijk_binvars(cg, agents_names)

        obj = _objective_function(cg, communication_load, alphas, agents_names)

        # In that case, the objective function must depend on two variables:
        self.assertEqual(len(obj.sorted_keys()), 2)
    def test_build_alphaijk_one_var_one_fac(self):
        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        agents_names = ['a1', 'a2']

        alphas = _build_alphaijk_binvars(cg, agents_names)

        self.assertEqual(len(alphas), 2)
        self.assertIn((('v1', 'f1'), 'a1'), alphas)
        self.assertIn((('v1', 'f1'), 'a2'), alphas)
        print(alphas)
Beispiel #17
0
    def test_respect_must_host_for_var(self):

        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        hints = DistributionHints(must_host={'a1': ['v1']})

        agent_mapping = distribute(cg, [a1, a2],
                                   hints=hints,
                                   computation_memory=ms.computation_memory,
                                   communication_load=ms.communication_load)

        self.assertEqual(agent_mapping.agent_for('v1'), 'a1')
    def test_must_host_one(self):
        d1 = VariableDomain('d1', '', [1, 2, 3, 5])

        v1 = Variable('v1', d1)
        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        hints = DistributionHints({'a1': ['v1']}, None)
        agents = [AgentDef('a1', capacity=100), AgentDef('a2', capacity=100)]
        agent_mapping = distribute(cg, agents, hints,
                                   computation_memory=lambda x: 10)

        self.assertIn('v1', agent_mapping.computations_hosted('a1'))
        self.assertTrue(is_all_hosted(cg, agent_mapping))
Beispiel #19
0
    def test_respect_must_host_all_computation_invalid(self):

        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        hints = DistributionHints(must_host={'a1': ['f1', 'v1']})

        # These hints lead to an impossible distribution, as ilp-fgdp requires
        # each agent to host at least one computation. Here Both
        # computations are hosted on a1 and there is no computation
        # available for a2 !
        self.assertRaises(ImpossibleDistributionException, distribute,
                          cg, [a1, a2], hints=hints,
                          computation_memory=ms.computation_memory,
                          communication_load=ms.communication_load)
    def test_simple_fg(self):
        d1 = VariableDomain('d1', '', [1, 2, 3, 5])

        v1 = Variable('v1', d1)
        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1], [cf1])

        agents= [AgentDef('a1'), AgentDef('a2')]
        distribution = distribute(cg, agents)

        self.assertEqual(len(distribution.agents), 2)
        self.assertEqual(len(distribution.computations), 2)
        self.assertEqual(len(distribution.computations_hosted('a1')), 1)
        self.assertEqual(len(distribution.computations_hosted('a2')), 1)
        self.assertNotEqual(distribution.computations_hosted('a2'),
                            distribution.computations_hosted('a1'))
Beispiel #21
0
    def test_comm_not_enough_place(self):
        f1 = relation_from_str('f1', 'v1 * 0.5 + v2 + v3', [v1, v2, v3])
        cv1 = VariableComputationNode(v1, ['f1'])
        cv2 = VariableComputationNode(v2, ['f1'])
        cv3 = VariableComputationNode(v3, ['f1'])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1, cv2, cv3], [cf1])
        hints = DistributionHints(must_host={'a1': ['v1', 'v2']})

        a1.capacity = 10
        agent_mapping = distribute(cg, [a1, a2],
                                   hints=hints,
                                   computation_memory=ms.computation_memory,
                                   communication_load=ms.communication_load)

        # As there is enough not capacity on a1, factor f1 and variable v3
        # must go on a2 
        self.assertEqual(agent_mapping.agent_for('f1'), 'a2')
        self.assertEqual(agent_mapping.agent_for('v3'), 'a2')
Beispiel #22
0
    def setUp(self):
        d1 = VariableDomain('d1', '', [1, 2, 3, 5])

        # An secp made of 2 lights, one model and two rule
        v1 = Variable('v1', d1)
        v2 = Variable('v2', d1)
        v3 = Variable('v3', d1)
        m1 = Variable('m1', d1)
        mf1 = relation_from_str('mf1', 'v1 + v2 == m1', [v1, v2, m1])
        r1 = relation_from_str('r1', 'm1 - v2', [m1, v2])
        r2 = relation_from_str('r2', 'v3', [v3])
        cv1 = VariableComputationNode(v1, ['mf1'])
        cv2 = VariableComputationNode(v2, ['mf1', 'r1'])
        cv3 = VariableComputationNode(v3, ['r2'])
        cm1 = VariableComputationNode(m1, ['mf1', 'r1'])
        cmf1 = FactorComputationNode(mf1)
        cr1 = FactorComputationNode(r1)
        cr2 = FactorComputationNode(r2)
        self.cg = ComputationsFactorGraph([cv1, cv2, cv3, cm1],
                                          [cmf1, cr1, cr2])
Beispiel #23
0
def distribution_cost(
    distribution: Distribution,
    computation_graph: ComputationsFactorGraph,
    agentsdef: Iterable[AgentDef],
    computation_memory: Callable[[ComputationNode], float],
    communication_load: Callable[[ComputationNode, str], float],
) -> float:
    """
    Compute the cost of the distribution.

    Only takes communication costs into account (no hosting nor route costs).

    Parameters
    ----------
    distribution
    computation_graph
    agentsdef
    computation_memory
    communication_load

    Returns
    -------

    """
    comm = 0
    agt_names = [a.name for a in agentsdef]
    for l in computation_graph.links:
        # As we support hypergraph, we may have more than 2 ends to a link
        for c1, c2 in combinations(l.nodes, 2):
            if distribution.agent_for(c1) != distribution.agent_for(c2):
                edge_cost = communication_load(
                    computation_graph.computation(c1), c2)
                logger.debug(f"edge cost between {c1} and {c2} :  {edge_cost}")
                comm += edge_cost
            else:
                logger.debug(
                    f"On same agent, no edge cost between {c1} and {c2}")

    # This distribution model only takes communication cost into account.
    # cost = RATIO_HOST_COMM * comm + (1-RATIO_HOST_COMM) * hosting
    return comm, comm, 0
    def test_host_with(self):
        d1 = VariableDomain('d1', '', [1, 2, 3, 5])

        v1 = Variable('v1', d1)
        v2 = Variable('v2', d1)
        f1 = relation_from_str('f1', 'v1 * 0.5', [v1])
        cv1 = VariableComputationNode(v1, ['f1'])
        cv2 = VariableComputationNode(v2, [])
        cf1 = FactorComputationNode(f1)
        cg = ComputationsFactorGraph([cv1, cv2], [cf1])

        hints = DistributionHints(None, {'v1': ['f1']})

        agents = [AgentDef('a{}'.format(i), capacity=100)
                  for i in range(1, 11)]
        agent_mapping = distribute(cg, agents, hints,
                                   computation_memory=lambda x: 10)

        self.assertEqual(agent_mapping.agent_for('v1'),
                         agent_mapping.agent_for('f1'))
        self.assertTrue(is_all_hosted(cg, agent_mapping))
Beispiel #25
0
def secp_computation_memory_in_cg(computation_name: str,
                                  cg: ComputationsFactorGraph,
                                  computation_memory):
    computation = cg.computation(computation_name)
    l = computation_memory(computation)
    return l
Beispiel #26
0
def distribute(
        computation_graph: ComputationsFactorGraph,
        agentsdef: Iterable[AgentDef],
        hints: DistributionHints = None,
        computation_memory: Callable[[ComputationNode], float] = None,
        communication_load: Callable[[ComputationNode, str], float] = None,
        timeout=None,  # not used
) -> Distribution:
    if computation_memory is None:
        raise ImpossibleDistributionException("adhoc distribution requires "
                                              "computation_memory functions")

    # as we're dealing with a secp modelled as a factor graph, we have computations for
    # actuator and physical model variables, rules and physical model factors.
    mapping = defaultdict(lambda: [])
    agents_capa = {a.name: a.capacity for a in agentsdef}
    variable_computations = []
    factor_computations = []
    for comp in computation_graph.nodes:
        if isinstance(comp, VariableComputationNode):
            variable_computations.append(comp.name)
        elif isinstance(comp, FactorComputationNode):
            factor_computations.append(comp.name)
        else:
            raise ImpossibleDistributionException(
                f"Error: {comp} is neither a factor nor a variable computation"
            )

    # First, put each actuator variable and cost factor on its agent
    for variable in variable_computations[:]:

        for agent in agentsdef:
            if agent.hosting_cost(variable) == 0:
                # Found an actuator variable, host it on the agent
                mapping[agent.name].append(variable)
                variable_computations.remove(variable)
                agents_capa[agent.name] -= computation_memory(
                    computation_graph.computation(variable))
                # search for the cost factor, if any, and host it on the same agent.
                for factor in factor_computations[:]:
                    if f"c_{variable}" == factor:
                        mapping[agent.name].append(factor)
                        factor_computations.remove(factor)
                        agents_capa[agent.name] -= computation_memory(
                            computation_graph.computation(factor))
                if agents_capa[agent.name] < 0:
                    raise ImpossibleDistributionException(
                        f"Not enough capacity on {agent} to hosts actuator {variable}: {agents_capa[agent.name]}"
                    )
                break
    logger.info(f"Actuator computations - agents: {dict(mapping)}")
    logger.info(f"Remaining capacity: {dict(agents_capa)}")

    # now find computations for physical models and variables variables.
    # * all remaining variables are model variables
    # * physical model factor computation names contain the name of the variable
    model_variables = variable_computations
    models = []
    for model_var in model_variables:
        for fact in factor_computations:
            if f"c_{model_var}" == fact:
                models.append((model_var, fact))
                factor_computations.remove(fact)

    # All remaining factor ar rule factors
    rule_factors = factor_computations

    logger.debug(f"Physical models: {models}")
    logger.debug(f"Rules: {rule_factors}")

    # Now place models
    for model_var, model_fac in models:
        footprint = computation_memory(
            computation_graph.computation(model_fac)) + computation_memory(
                computation_graph.computation(model_var))
        neighbors = computation_graph.neighbors(model_fac)

        candidates = find_candidates(agents_capa, model_fac, footprint,
                                     mapping, neighbors)

        # Host the model on the first agent and decrease its remaining capacity
        selected = candidates[0][2]
        mapping[selected].append(model_var)
        mapping[selected].append(model_fac)
        agents_capa[selected] -= footprint
    logger.debug(f"All models hosted: {dict(mapping)}")
    logger.debug(f"Remaining capacity: {agents_capa}")

    # And rules at last:
    for rule_fac in rule_factors:
        footprint = computation_memory(computation_graph.computation(rule_fac))
        neighbors = computation_graph.neighbors(rule_fac)

        candidates = find_candidates(agents_capa, rule_fac, footprint, mapping,
                                     neighbors)

        # Host the computation on the first agent and decrease its remaining capacity
        selected = candidates[0][2]
        mapping[selected].append(rule_fac)
        agents_capa[selected] -= footprint

    return Distribution({a: list(mapping[a]) for a in mapping})