Beispiel #1
0
    def __init__(self,
                 host="localhost",
                 port=8080,
                 sname="",
                 description="",
                 mllib="caffe",
                 service_parameters_input=None,
                 service_parameters_mllib=None,
                 service_parameters_output=None,
                 model=None,
                 tmp_dir=None):

        self.host = host
        self.port = port
        self.sname = sname
        self.model = model
        self.description = description
        self.mllib = mllib
        self.tmp_dir = tmp_dir

        self.service_parameters_input = service_parameters_input
        self.service_parameters_mllib = service_parameters_mllib
        self.service_parameters_output = service_parameters_output

        self.n_pred = 0
        self.n_fit = 0
        self.calls = []
        self.answers = []
        # self.train_logs = None
        super(AbstractModels, self).__init__(self.host, self.port)

        if self.sname:
            for service in self.get_info()['head']['services']:
                if service['name'] == self.sname.lower(
                ):  # DD lowercases services' name
                    self.delete_service(self.sname, clear="mem")
        else:
            self.sname = "pyDD_{}".format(time_utils.fulltimestamp())
            self.description = self.sname

        # Check if a repository is given otherwise creates one
        if "repository" not in self.model or not self.model["repository"]:
            self.repository = tempfile.mkdtemp(prefix="pydd_",
                                               dir=self.tmp_dir)
            self.model["repository"] = self.repository
            os_utils._create_dirs([self.model["repository"]])
        else:
            assert os.path.exists(
                self.model["repository"]), "{} does not exist".format(
                    self.model["repository"])

        json_dump = self.create_service(self.sname, self.model,
                                        self.description, self.mllib,
                                        self.service_parameters_input,
                                        self.service_parameters_mllib,
                                        self.service_parameters_output)
        self.answers.append(json_dump)

        with open("{}/model.json".format(self.model["repository"])) as f:
            self.calls = [json.loads(line, encoding="utf-8") for line in f]
Beispiel #2
0
    def test_predict_from_model(self):

        snames = ['svm_predict_from_model', 'array_predict_from_model']
        model_repo = [
            os.path.abspath('model_svm'),
            os.path.abspath('model_array')
        ]
        params = {'nclasses': n_classes, 'gpu': True}
        params.update(connec_param)

        train_path = os.path.abspath('x_train.svm')
        test_path = os.path.abspath('x_test.svm')
        datasets.dump_svmlight_file(x_train, y_train, train_path)
        datasets.dump_svmlight_file(x_test, y_test, test_path)

        # We make sure model repo does not exist
        for folder in model_repo:
            if os.path.exists(folder):
                os_utils._remove_dirs([folder])
        os_utils._create_dirs(model_repo)

        # Create model, make sure the sname is not used by the server
        clf_svm = MLPfromSVM(sname=snames[0],
                             repository=model_repo[0],
                             **params)
        clf_array = MLPfromArray(sname=snames[1],
                                 repository=model_repo[1],
                                 **params)

        clf_svm.fit([train_path, test_path], iterations=300)
        clf_array.fit(x_train,
                      y_train,
                      validation_data=[(x_test, y_test)],
                      iterations=300)

        y_pred_svm = clf_svm.predict(test_path)
        y_pred_array = clf_array.predict(x_test)

        # Load from existing model
        params = {'nclasses': n_classes, 'finetuning': True, 'template': None}
        params.update(connec_param)
        clf_svm = MLPfromSVM(sname=snames[0],
                             repository=model_repo[0],
                             **params)
        clf_array = MLPfromArray(sname=snames[1],
                                 repository=model_repo[1],
                                 **params)

        assert np.array_equal(y_pred_svm, clf_svm.predict(test_path))
        assert np.array_equal(y_pred_array, clf_array.predict(x_test))
        os_utils._remove_files([train_path, test_path])
        os_utils._remove_dirs(model_repo)
Beispiel #3
0
from sklearn import datasets, preprocessing, model_selection, metrics

# Parameters
test_size = 0.2
seed = 1337
host = 'localhost'
port = 8080
nclasses = 10
sname = 'predict_from_model'

model_repo = os.path.abspath('trained_model')

# We make sure model repo does not exist
if os.path.exists(model_repo):
    os_utils._remove_dirs([model_repo])
os_utils._create_dirs([model_repo])

# create dataset
X, Y = datasets.load_digits(return_X_y=True)
X = preprocessing.StandardScaler().fit_transform(X)
xtr, xte, ytr, yte = model_selection.train_test_split(X,
                                                      Y,
                                                      test_size=test_size,
                                                      random_state=seed)

# create and save train.svm and test.svm
tr_f = os.path.abspath('x_train.svm')
te_f = os.path.abspath('x_test.svm')
datasets.dump_svmlight_file(xtr, ytr, tr_f)
datasets.dump_svmlight_file(xte, yte, te_f)
Beispiel #4
0
    def __init__(self,
                 host='localhost',
                 port=8080,
                 sname='',
                 mllib='caffe',
                 description='',
                 repository='',
                 templates='../templates/caffe',
                 connector='svm',
                 nclasses=None,
                 ntargets=None,
                 gpu=False,
                 gpuid=0,
                 template='mlp',
                 layers=[50],
                 activation='relu',
                 dropout=0.5,
                 regression=False,
                 finetuning=False,
                 db=True):
        self.host = host
        self.port = port
        self.sname = sname
        self.mllib = mllib
        self.description = description
        self.repository = repository
        self.templates = templates
        self.connector = connector
        self.nclasses = nclasses
        self.ntargets = ntargets
        self.gpu = gpu
        self.gpuid = gpuid
        self.template = template
        self.layers = layers
        self.activation = activation
        self.dropout = dropout
        self.regression = regression
        self.finetuning = finetuning
        self.db = db

        self.params = {
            'host': self.host,
            'port': self.port,
            'sname': self.sname,
            'mllib': self.mllib,
            'description': self.description,
            'repository': self.repository,
            'templates': self.templates,
            'connector': self.connector,
            'nclasses': self.nclasses,
            'ntargets': self.ntargets,
            'gpu': self.gpu,
            'gpuid': self.gpuid,
            'template': self.template,
            'layers': self.layers,
            'activation': self.activation,
            'dropout': self.dropout,
            'regression': self.regression,
            'finetuning': self.finetuning,
            'db': self.db,
        }

        self.n_pred = 0
        self.n_fit = 0
        self.calls = []
        self.answers = []
        self.model = {
            'templates': self.templates,
            'repository': self.repository
        }
        self.service_parameters_mllib = {
            'nclasses': self.nclasses,
            'ntargets': self.ntargets,
            'gpu': self.gpu,
            'gpuid': self.gpuid,
            'template': self.template,
            'layers': self.layers,
            'activation': self.activation,
            'dropout': self.dropout,
            'regression': self.regression,
            'finetuning': self.finetuning,
            'db': self.db
        }
        self.service_parameters_input = {'connector': self.connector}
        self.service_parameters_output = {}
        super(genericMLP, self).__init__(self.host, self.port)

        if self.sname == '':
            self.sname = "pyDD_MLP_{}".format(time_utils.fulltimestamp())
            self.description = self.sname
        else:
            self.delete_service(self.sname, "mem")

        tmp_dir = tempfile.mkdtemp()
        self.data_folder = "{}/data".format(tmp_dir)
        if self.model['repository'] == '':
            self.model['repository'] = "{}/model".format(tmp_dir)
        os_utils._create_dirs([self.model['repository'], self.data_folder])

        json_dump = self.create_service(self.sname, self.model,
                                        self.description, self.mllib,
                                        self.service_parameters_input,
                                        self.service_parameters_mllib,
                                        self.service_parameters_output)
        self.answers.append(json_dump)

        with open("{}/model.json".format(self.model['repository'])) as f:
            self.calls = [json.loads(line, encoding='utf-8') for line in f]
Beispiel #5
0
from pydd.connectors import SVMConnector
from pydd.utils import os_utils, lmdb_utils
from sklearn import datasets, metrics, model_selection, preprocessing


# Parameters
seed = 1337
np.random.seed(seed)  # for reproducibility
n_classes = 10
params = {"port": 8080, "nclasses": n_classes, "gpu": True}
split_params = {"test_size": 0.2, "random_state": seed}

folder = "train-from-lmdb"
if os.path.exists(folder):
    os_utils._remove_dirs([folder])
os_utils._create_dirs([folder])


# create dataset
X, y = datasets.load_digits(n_class=n_classes, return_X_y=True)
X = preprocessing.StandardScaler().fit_transform(X)
xtr, xte, ytr, yte = model_selection.train_test_split(X, y, **split_params)

# create and save train.svm and test.svm
tr_f = os.path.abspath("{}/x_train.svm".format(folder))
te_f = os.path.abspath("{}/x_test.svm".format(folder))
datasets.dump_svmlight_file(xtr, ytr, tr_f)
datasets.dump_svmlight_file(xte, yte, te_f)

# create lmdb dataset
tr_lmdb = os.path.abspath("{}/train.lmdb".format(folder))
Beispiel #6
0
params = {
    'host': 'localhost',
    'port': 8085,
    'nclasses': 10,
    'layers': [100, 100],
    'activation': 'relu',
    'dropout': 0.2,
    'db': True,
    'gpu': True
}

# We make sure model repo does not exist
for folder in model_repo:
    if os.path.exists(folder):
        os_utils._remove_dirs([folder])
os_utils._create_dirs(model_repo)

# Create dataset
X, Y = datasets.load_digits(return_X_y=True)
X = preprocessing.StandardScaler().fit_transform(X)
x_train, x_test, y_train, y_test = model_selection.train_test_split(
    X, Y, test_size=0.2, random_state=1337)

# Save data in .svm format
train_path = os.path.abspath('x_train.svm')
test_path = os.path.abspath('x_test.svm')
datasets.dump_svmlight_file(x_train, y_train, train_path)
datasets.dump_svmlight_file(x_test, y_test, test_path)

# Create model, make sure the sname is not used by the server
clf_svm = MLPfromSVM(sname=snames[0], repository=model_repo[0], **params)