Beispiel #1
0
def imshow_filter_optimal_gratings(filters, opt_frq, opt_ang):
    """ Plot the filters and corresponding optimal gating pattern.

    :param filters: Filters to analyze.
    :type filters: numpy array

    :param opt_frq: Optimal frequencies.
    :type opt_frq: int

    :param opt_ang: Optimal frequencies.
    :type opt_ang: int
    """
    # something here
    input_dim = filters.shape[0]
    output_dim = filters.shape[1]
    max_wavelength = int(np.sqrt(input_dim))

    frqmatrix = np.tile(float(1) / opt_frq * np.pi * 2, (input_dim, 1))
    thetamatrix = np.tile(opt_ang, (input_dim, 1))
    vec_xy = np.array(range(0, input_dim))
    vec_x = np.floor_divide(vec_xy, max_wavelength)
    vec_y = vec_xy + 1 - vec_x * max_wavelength
    xmatrix = np.tile(vec_x, (output_dim, 1))
    ymatrix = np.tile(vec_y, (output_dim, 1))
    gratingmatrix = np.cos(frqmatrix * (np.sin(thetamatrix) * xmatrix.transpose() + np.cos(thetamatrix
                                                                                           ) * ymatrix.transpose()))
    combinedmatrix = np.concatenate((rescale_data(filters), rescale_data(gratingmatrix)), 1)
    imshow_matrix(tile_matrix_rows(combinedmatrix, max_wavelength, max_wavelength, 2, output_dim, border_size=1,
                                   normalized=False), 'optimal grating')
Beispiel #2
0
def tile_matrix_rows(matrix,
                     tile_width,
                     tile_height,
                     num_tiles_x,
                     num_tiles_y,
                     border_size=1,
                     normalized=True):
    """ Creates a matrix with tiles from rows.

    :param matrix: Matrix to display.
    :type matrix: numpy array 2D

    :param tile_width: Tile width dimension.
    :type tile_width: int

    :param tile_height: Tile height dimension.
    :type tile_height: int

    :param num_tiles_x: Number of tiles horizontal.
    :type num_tiles_x: int

    :param num_tiles_y: Number of tiles vertical.
    :type num_tiles_y: int

    :param border_size: Size of the border.
    :type border_size: int

    :param normalized: If true each image gets normalized to be between 0..1.
    :type normalized: bool

    :return: Matrix showing the 2D patches.
    :rtype: 2D numpy array
    """
    if normalized is True:
        result = np.max(rescale_data(matrix))
    else:
        result = np.max(matrix)
    result *= np.ones(
        (tile_width * num_tiles_x + (num_tiles_x - 1) * border_size,
         tile_height * num_tiles_y + (num_tiles_y - 1) * border_size))
    for x in xrange(num_tiles_x):
        for y in xrange(num_tiles_y):
            single_image = matrix[:, (x * num_tiles_y) + y].reshape(
                tile_width, tile_height)
            if normalized is True:
                result[x * (tile_width + border_size):x *
                       (tile_width + border_size) + tile_width,
                       y * (tile_height + border_size):y *
                       (tile_height + border_size) +
                       tile_height] = rescale_data(single_image)
            else:
                result[x * (tile_width + border_size):x *
                       (tile_width + border_size) + tile_width,
                       y * (tile_height + border_size):y *
                       (tile_height + border_size) +
                       tile_height] = single_image
    return result
Beispiel #3
0
def tile_matrix_rows(matrix, 
                     tile_width, 
                     tile_height, 
                     num_tiles_x, 
                     num_tiles_y, 
                     border_size=1,
                     normalized = True):
    ''' Creates a matrix with tiles from rows.
        
    :Parameters:
        matrix:      Matrix to display.
                    -type: numpy array 2D
                     
        tile_width:  tile width dimension.
                    -type: int
                     
        tile_height: tile height  dimension. 
                    -type: int
                     
        num_tiles_x: Number of tiles horizontal.
                    -type: int        
        
        num_tiles_y: Number of tiles vertical.
                    -type: int
                     
        border_size: Size of the border.
                    -type: int
                     
        normalized:  If true each image gets normalized to be between 0..1.
                    -type: bool
                     
    :Returns:
        Image showing the 2D patches.
       -type: numpy array 2D 
        
    '''
    if(normalized==True):
        result = np.max(rescale_data(matrix))
    else:
        result = np.max(matrix)
    result *= np.ones((tile_width*num_tiles_x+(num_tiles_x-1)
                       *border_size, tile_height*num_tiles_y
                       +(num_tiles_y-1)*border_size))
    for x in xrange(num_tiles_x) : 
        for y in xrange(num_tiles_y) :
            single_image = matrix[:,(x*num_tiles_y)+y].reshape(tile_width,
                                                               tile_height)
            if(normalized==True):
                result[x*(tile_width + border_size):x*(tile_width 
                + border_size)+tile_width, y*(tile_height + border_size ):y
                *(tile_height + border_size )+tile_height] =  rescale_data(
                                                                single_image)
            else:
                result[x*(tile_width + border_size):x*(tile_width 
                + border_size)+tile_width, y*(tile_height + border_size ):y
                *(tile_height + border_size )+tile_height] =  single_image
    return result
Beispiel #4
0
 def test_rescale_data(self):
     print ('Preprocessing -> Performing rescale_data test ...')
     sys.stdout.flush()
     data = rescale_data(numx.random.randn(100, 100), new_min=-2.0, new_max=4.0)
     assert numx.sum(data >= -2.0) + numx.sum(data <= 4.0) == 20000
     print('successfully passed!')
     sys.stdout.flush()