Beispiel #1
0
def test_linearized_mms_ldg_irk():
    # g = functions.Sine(offset=2.0)
    # r = -1.0
    # exact_solution = flux_functions.ExponentialFunction(g, r)
    exact_solution = flux_functions.AdvectingSine(offset=2.0)
    t_initial = 0.0
    t_final = 0.1
    exact_solution_final = lambda x: exact_solution(x, t_final)
    bc = boundary.Periodic()
    p_class = convection_hyper_diffusion.NonlinearHyperDiffusion
    p_func = p_class.linearized_manufactured_solution
    for diffusion_function in diffusion_functions:
        problem = p_func(exact_solution, diffusion_function)
        for num_basis_cpts in range(1, 3):
            irk = implicit_runge_kutta.get_time_stepper(num_basis_cpts)
            for basis_class in basis.BASIS_LIST:
                basis_ = basis_class(num_basis_cpts)
                error_list = []
                for i in [1, 2]:
                    if i == 1:
                        delta_t = 0.01
                        num_elems = 20
                    else:
                        delta_t = 0.005
                        num_elems = 40
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    dg_solution = basis_.project(problem.initial_condition,
                                                 mesh_)
                    # time_dependent_matrix time does matter
                    matrix_function = lambda t: problem.ldg_matrix(
                        dg_solution, t, bc, bc, bc, bc)
                    rhs_function = problem.get_implicit_operator(
                        bc, bc, bc, bc)
                    solve_function = time_stepping.get_solve_function_matrix(
                        matrix_function)
                    new_solution = time_stepping.time_step_loop_implicit(
                        dg_solution,
                        t_initial,
                        t_final,
                        delta_t,
                        irk,
                        rhs_function,
                        solve_function,
                    )
                    error = math_utils.compute_error(new_solution,
                                                     exact_solution_final)
                    error_list.append(error)
                    # plot.plot_dg_1d(new_solution, function=exact_solution_final)
                order = utils.convergence_order(error_list)
                assert order >= num_basis_cpts
def test_imex_linearized_mms():
    # advection with linearized diffusion
    # (q_t + q_x = (f(x, t) q_xx + s(x, t))
    exact_solution = flux_functions.AdvectingSine(amplitude=0.1, offset=0.15)
    p_class = convection_hyper_diffusion.ConvectionHyperDiffusion
    p_func = p_class.linearized_manufactured_solution
    t_initial = 0.0
    bc = boundary.Periodic()
    for diffusion_function in [squared]:
        problem = p_func(exact_solution, None, diffusion_function)
        cfl_list = [0.9, 0.15, 0.1]
        for num_basis_cpts in range(2, 4):
            imex = imex_runge_kutta.get_time_stepper(num_basis_cpts)
            cfl = cfl_list[num_basis_cpts - 1]
            n = 20
            t_final = cfl * (1.0 / n) / exact_solution.wavespeed
            exact_solution_final = lambda x: exact_solution(x, t_final)
            for basis_class in [basis.LegendreBasis1D]:
                basis_ = basis_class(num_basis_cpts)
                error_list = []
                for num_elems in [n, 2 * n]:
                    mesh_ = mesh.Mesh1DUniform(0.0, 1.0, num_elems)
                    delta_t = cfl * mesh_.delta_x / exact_solution.wavespeed
                    dg_solution = basis_.project(problem.initial_condition,
                                                 mesh_)

                    # weak dg form with flux_function and source term
                    explicit_operator = problem.get_explicit_operator(bc)
                    # ldg discretization of diffusion_function
                    implicit_operator = problem.get_implicit_operator(
                        bc, bc, bc, bc, include_source=False)
                    # this is a constant matrix case
                    matrix_function = lambda t: problem.ldg_matrix(
                        dg_solution, t, bc, bc, bc, bc, include_source=False)

                    solve_operator = time_stepping.get_solve_function_matrix(
                        matrix_function)

                    final_solution = time_stepping.time_step_loop_imex(
                        dg_solution,
                        t_initial,
                        t_final,
                        delta_t,
                        imex,
                        explicit_operator,
                        implicit_operator,
                        solve_operator,
                    )

                    error = math_utils.compute_error(final_solution,
                                                     exact_solution_final)
                    error_list.append(error)
                    # plot.plot_dg_1d(final_solution, function=exact_solution_final)
                order = utils.convergence_order(error_list)
                with open("hyper_diffusion_linearized_mms_test.yml",
                          "a") as file:
                    dict_ = dict()
                    subdict = dict()
                    subdict["cfl"] = cfl
                    subdict["n"] = n
                    subdict["error0"] = float(error_list[0])
                    subdict["error1"] = float(error_list[1])
                    subdict["order"] = float(
                        np.log2(error_list[0] / error_list[1]))
                    dict_[num_basis_cpts] = subdict
                    yaml.dump(dict_, file, default_flow_style=False)
                assert order >= num_basis_cpts