Beispiel #1
0
def test_get_faces_to_elems():
    mesh1d_uniform = mesh.Mesh1DUniform(0.0, 1.0, 10)
    mesh2d_cartesian = mesh.Mesh2DCartesian(0.0, 1.0, 0.0, 1.0, 10, 10)
    mesh2d_unstructured = mesh.Mesh2DUnstructuredRectangle(
        0.0, 1.0, 0.0, 1.0, 10, 10)

    mesh_array = [mesh1d_uniform, mesh2d_cartesian, mesh2d_unstructured]
    for mesh_ in mesh_array:
        faces_to_elems = mesh_._get_faces_to_elems(mesh_.faces, mesh_.elems,
                                                   mesh_.boundary_faces)
        for i_face in range(mesh_.num_faces):
            for i_elem in faces_to_elems[i_face]:
                assert math_utils.isin(i_elem, mesh_.face_to_elems[i_face])
Beispiel #2
0
def test_get_elems_to_faces():
    mesh1d_uniform = mesh.Mesh1DUniform(0.0, 1.0, 10)
    mesh2d_cartesian = mesh.Mesh2DCartesian(0.0, 1.0, 0.0, 1.0, 10, 10)
    mesh2d_unstructured = mesh.Mesh2DUnstructuredRectangle(
        0.0, 1.0, 0.0, 1.0, 10, 10)

    mesh_array = [mesh1d_uniform, mesh2d_cartesian, mesh2d_unstructured]
    for mesh_ in mesh_array:
        elems_to_faces = mesh_._get_elems_to_faces(mesh_.faces, mesh_.elems,
                                                   mesh_.num_faces_per_elem)
        for i_elem in range(mesh_.num_elems):
            for i_face in elems_to_faces[i_elem]:
                assert math_utils.isin(i_face, mesh_.elems_to_faces[i_elem])
Beispiel #3
0
    def get_solution_on_face(self, dg_solution, face_index, x, t):
        mesh_ = dg_solution.mesh_
        assert math_utils.isin(face_index, mesh_.boundary_faces)

        left_elem_index = mesh_.faces_to_elems[face_index, 0]
        right_elem_index = mesh_.faces_to_elems[face_index, 1]

        if left_elem_index != -1:
            interior_state = dg_solution.evaluate_canonical(
                1.0, left_elem_index)
        else:
            interior_state = dg_solution.evaluate_canonical(
                -1.0, right_elem_index)

        return (interior_state, interior_state)
Beispiel #4
0
    def get_left_right_states(self, dg_solution, face_index, x, t):
        mesh_ = dg_solution.mesh_
        # Need to extrapolate based on average value
        assert math_utils.isin(face_index, mesh_.boundary_faces)

        elem_indices = mesh_.faces_to_elems[face_index]

        if elem_indices[0] == -1:
            elem_index = elem_indices[1]
        else:
            elem_index = elem_indices[0]

        left_state = dg_solution(x, elem_index)
        right_state = dg_solution(x, elem_index)

        return (left_state, right_state)
Beispiel #5
0
    def get_left_right_states(self, dg_solution, face_index, x, t):
        mesh_ = dg_solution.mesh_

        assert math_utils.isin(face_index, mesh_.boundary_faces)

        if mesh_.num_dims == 1:
            # determine which elements are on boundary
            rightmost_elem = mesh_.get_rightmost_elem_index()
            leftmost_elem = mesh_.get_leftmost_elem_index()

            # left state is right side of rightmost elem

            left_state = dg_solution.evaluate_canonical(
                np.array([1.0]), rightmost_elem)
            # right state is left side of leftmost elem
            right_state = dg_solution.evaluate_canonical(
                np.array([-1.0]), leftmost_elem)
        else:
            # assume Mesh2DCartesian
            if x[0] == mesh_.x_left:
                right_elem_index = mesh_.faces_to_elems[face_index, 1]
                tuple_ = mesh_.to_row_col_indices(right_elem_index)
                left_elem_index = mesh_.from_row_col_indices(
                    tuple_[0], mesh_.num_cols - 1)
            elif x[0] == mesh_.x_right:
                left_elem_index = mesh_.faces_to_elems[face_index, 0]
                tuple_ = mesh_.to_row_col_indices(left_elem_index)
                right_elem_index = mesh_.from_row_col_indices(tuple_[0], 0)
            elif x[1] == mesh_.y_bottom:
                right_elem_index = mesh_.faces_to_elems[face_index, 1]
                tuple_ = mesh_.to_row_col_indices(right_elem_index)
                left_elem_index = mesh_.from_row_col_indices(
                    mesh_.num_rows - 1, tuple_[1])
            elif x[1] == mesh_.y_top:
                left_elem_index = mesh_.faces_to_elems[face_index, 0]
                tuple_ = mesh_.to_row_col_indices(left_elem_index)
                right_elem_index = mesh_.from_row_col_indices(0, tuple_[1])

            right_state = dg_solution(x, right_elem_index)
            left_state = dg_solution(x, left_elem_index)

        return (left_state, right_state)
Beispiel #6
0
    def evaluate_boundary_matrix(self, mesh_, basis_, face_index,
                                 riemann_solver, t, matrix, vector):
        assert math_utils.isin(face_index, mesh_.boundary_faces)

        elems = mesh_.faces_to_elems[face_index]
        x = mesh_.get_face_position(face_index)

        tuple_ = riemann_solver.linear_constants(x, t)
        c_l = tuple_[0]
        c_r = tuple_[1]

        phi_p1 = basis_.phi_p1
        phi_m1 = basis_.phi_m1

        # left boundary
        if elems[0] == -1:
            # Q_{i-1} should be Q_i
            # replacing rightmost state of Q_{i-1} with leftmost state of Q_i
            # normally we have 1/m_i c_l_imh Cm11 Q_{i-1} in interior
            # on boundary 1/m_i c_l_imh Cm1m1 Q_i
            i = elems[1]
            indices_i = solution.vector_indices(i, basis_.num_basis_cpts)
            Cm1m1 = np.matmul(basis_.mass_matrix_inverse,
                              np.outer(phi_m1, phi_m1))
            matrix[indices_i,
                   indices_i] += (1.0 / mesh_.elem_metrics[i]) * c_l * Cm1m1

        # right boundary
        elif elems[1] == -1:
            # Q_{i+1} should be Q_i
            # replacing leftmost state of Q_{i+1} with rightmost state of Q_i
            # normally we have -1/m_i c_r_imh C1m1 Q_{i+1} in interior
            # on boundary -1/m_i c_r_imh C11 Q_i
            i = elems[0]
            indices_i = solution.vector_indices(i, basis_.num_basis_cpts)
            C11 = np.matmul(basis_.mass_matrix_inverse,
                            np.outer(phi_p1, phi_p1))
            matrix[indices_i,
                   indices_i] += (-1.0 / mesh_.elem_metrics[i]) * c_r * C11

        return (matrix, vector)
Beispiel #7
0
    def evaluate_boundary_matrix(self, mesh_, basis_, face_index,
                                 riemann_solver, t, matrix, vector):
        assert math_utils.isin(face_index, mesh_.boundary_faces)
        elems = mesh_.faces_to_elems[face_index]

        x = mesh_.get_face_position(face_index)
        tuple_ = riemann_solver.linear_constants(x, t)
        c_l = tuple_[0]
        c_r = tuple_[1]

        phi_p1 = basis_.phi_p1
        phi_m1 = basis_.phi_m1

        # left boundary
        if elems[0] == -1:
            # Q_{i-1} should be rightmost elem
            i = elems[1]
            indices_i = solution.vector_indices(i, basis_.num_basis_cpts)
            indices_l = solution.vector_indices(
                mesh_.get_rightmost_elem_index(), basis_.num_basis_cpts)
            Cm11 = np.matmul(basis_.mass_matrix_inverse,
                             np.outer(phi_m1, phi_p1))
            matrix[indices_i,
                   indices_l] += (1.0 / mesh_.elem_metrics[i]) * c_l * Cm11

        # right boundary
        elif elems[1] == -1:
            i = elems[0]
            indices_i = solution.vector_indices(i, basis_.num_basis_cpts)
            indices_r = solution.vector_indices(
                mesh_.get_leftmost_elem_index(), basis_.num_basis_cpts)
            C1m1 = np.matmul(basis_.mass_matrix_inverse,
                             np.outer(phi_p1, phi_m1))
            matrix[indices_i,
                   indices_r] += (-1.0 / mesh_.elem_metrics[i]) * c_r * C1m1

        return (matrix, vector)
def test_isin():
    x = range(10)
    assert math_utils.isin(1, x)
    assert not math_utils.isin(-1, x)