def test_frame_velocity(self):
     frame_velocity = FrameVelocity()
     self.assertTrue(isinstance(frame_velocity, BasicVector))
     self.assertTrue(isinstance(copy.copy(frame_velocity), FrameVelocity))
     self.assertTrue(isinstance(frame_velocity.Clone(), FrameVelocity))
     self.assertEqual(frame_velocity.size(), FrameVelocity.kSize)
     # - Accessors.
     self.assertTrue(
         isinstance(frame_velocity.get_velocity(), SpatialVelocity))
     # - Value.
     self.assertTrue(
         np.allclose(frame_velocity.get_velocity().rotational(), 3 * [0.]))
     self.assertTrue(
         np.allclose(frame_velocity.get_velocity().translational(),
                     3 * [0.]))
     # - Mutators.
     w = [0.1, 0.3, 0.5]
     v = [0., 1., 2.]
     frame_velocity.set_velocity(SpatialVelocity(w=w, v=v))
     self.assertTrue(
         np.allclose(frame_velocity.get_velocity().rotational(), w))
     self.assertTrue(
         np.allclose(frame_velocity.get_velocity().translational(), v))
     # - Ensure ordering is ((wx, wy, wz), (vx, vy, vz))
     velocity_expected = np.hstack((w, v))
     velocity_actual = frame_velocity.get_value()
     self.assertTrue(np.allclose(velocity_actual, velocity_expected))
     # - Fully-parameterized constructor.
     frame_velocity1 = FrameVelocity(SpatialVelocity(w=w, v=v))
     self.assertTrue(
         np.allclose(frame_velocity1.get_velocity().rotational(), w))
     self.assertTrue(
         np.allclose(frame_velocity1.get_velocity().translational(), v))
Beispiel #2
0
    def test_road_odometry(self):
        RoadOdometry()
        rg = make_two_lane_road()
        lane_0 = rg.junction(0).segment(0).lane(0)
        lane_1 = rg.junction(0).segment(0).lane(1)
        lane_pos = LanePosition(s=1., r=2., h=3.)
        road_pos = RoadPosition(lane=lane_0, pos=lane_pos)
        w = [5., 7., 9.]
        v = [11., 13., 15.]
        frame_velocity = FrameVelocity(SpatialVelocity(w=w, v=v))
        road_odom = RoadOdometry(road_position=road_pos,
                                 frame_velocity=frame_velocity)

        self.assertEqual(road_odom.lane.id().string(), lane_0.id().string())
        self.assertTrue(np.allclose(road_odom.pos.srh(), lane_pos.srh()))
        self.assertTrue(
            np.allclose(frame_velocity.get_velocity().translational(),
                        road_odom.vel.get_velocity().translational()))
        lane_pos_new = LanePosition(s=10., r=20., h=30.)
        v_new = [42., 43., 44.]
        frame_velocity_new = FrameVelocity(SpatialVelocity(w=w, v=v_new))
        road_odom.lane = lane_1
        road_odom.pos = lane_pos_new
        road_odom.vel = frame_velocity_new

        self.assertEqual(road_odom.lane.id().string(), lane_1.id().string())
        self.assertTrue(np.allclose(road_odom.pos.srh(), lane_pos_new.srh()))
        self.assertTrue(
            np.allclose(frame_velocity_new.get_velocity().translational(),
                        road_odom.vel.get_velocity().translational()))
 def test_pose_bundle(self):
     num_poses = 7
     bundle = PoseBundle(num_poses)
     # - Accessors.
     self.assertEqual(bundle.get_num_poses(), num_poses)
     self.assertTrue(isinstance(bundle.get_transform(0), RigidTransform))
     self.assertTrue(isinstance(bundle.get_velocity(0), FrameVelocity))
     # - Mutators.
     kIndex = 5
     p = [0, 1, 2]
     q = Quaternion(wxyz=normalized([0.1, 0.3, 0.7, 0.9]))
     pose = RigidTransform(quaternion=q, p=p)
     bundle.set_transform(kIndex, pose)
     self.assertTrue((bundle.get_transform(kIndex).GetAsMatrix34() ==
                      pose.GetAsMatrix34()).all())
     w = [0.1, 0.3, 0.5]
     v = [0., 1., 2.]
     frame_velocity = FrameVelocity(SpatialVelocity(w=w, v=v))
     bundle.set_velocity(kIndex, frame_velocity)
     vel_actual = bundle.get_velocity(kIndex).get_velocity()
     self.assertTrue(np.allclose(vel_actual.rotational(), w))
     self.assertTrue(np.allclose(vel_actual.translational(), v))
     name = "Alice"
     bundle.set_name(kIndex, name)
     self.assertEqual(bundle.get_name(kIndex), name)
     instance_id = 42  # Supply a random instance id.
     bundle.set_model_instance_id(kIndex, instance_id)
     self.assertEqual(bundle.get_model_instance_id(kIndex), instance_id)
Beispiel #4
0
    def test_pose_selector(self):
        kScanDistance = 4.
        rg = make_two_lane_road()
        lane = rg.junction(0).segment(0).lane(0)
        pose0 = PoseVector()
        pose0.set_translation([1., 0., 0.])
        pose1 = PoseVector()
        # N.B. Set pose1 3 meters ahead of pose0.
        pose1.set_translation([4., 0., 0.])

        bundle = PoseBundle(num_poses=2)
        bundle.set_pose(0, Isometry3(Quaternion(), pose0.get_translation()))
        bundle.set_pose(1, Isometry3(Quaternion(), pose1.get_translation()))

        closest_pose = PoseSelector.FindSingleClosestPose(
            lane=lane,
            ego_pose=pose0,
            traffic_poses=bundle,
            scan_distance=kScanDistance,
            side=AheadOrBehind.kAhead,
            path_or_branches=ScanStrategy.kPath)
        self.assertEqual(closest_pose.odometry.lane.id().string(),
                         lane.id().string())
        self.assertTrue(closest_pose.distance == 3.)

        closest_pair = PoseSelector.FindClosestPair(
            lane=lane,
            ego_pose=pose0,
            traffic_poses=bundle,
            scan_distance=kScanDistance,
            path_or_branches=ScanStrategy.kPath)
        self.assertEqual(
            closest_pair[AheadOrBehind.kAhead].odometry.lane.id().string(),
            lane.id().string())
        self.assertEqual(closest_pair[AheadOrBehind.kAhead].distance, 3.)
        self.assertEqual(
            closest_pair[AheadOrBehind.kBehind].odometry.lane.id().string(),
            lane.id().string())
        self.assertEqual(closest_pair[AheadOrBehind.kBehind].distance,
                         float('inf'))

        lane_pos = LanePosition(s=1., r=0., h=0.)
        road_pos = RoadPosition(lane=lane, pos=lane_pos)
        w = [1., 2., 3.]
        v = [-4., -5., -6.]
        frame_velocity = FrameVelocity(SpatialVelocity(w=w, v=v))
        road_odom = RoadOdometry(road_position=road_pos,
                                 frame_velocity=frame_velocity)
        sigma_v = PoseSelector.GetSigmaVelocity(road_odom)
        self.assertEqual(sigma_v, v[0])
Beispiel #5
0
    def test_idm_controller(self):
        rg = make_two_lane_road()
        idm = IdmController(
            road=rg,
            path_or_branches=ScanStrategy.kPath,
            road_position_strategy=RoadPositionStrategy.kExhaustiveSearch,
            period_sec=0.)
        context = idm.CreateDefaultContext()
        output = idm.AllocateOutput()

        # Fix the inputs.
        pose_vector1 = PoseVector()
        pose_vector1.set_translation([1., 2., 3.])
        ego_pose_index = idm.ego_pose_input().get_index()
        context.FixInputPort(ego_pose_index, pose_vector1)

        w = [0., 0., 0.]
        v = [1., 0., 0.]
        frame_velocity1 = FrameVelocity(SpatialVelocity(w=w, v=v))
        ego_velocity_index = idm.ego_velocity_input().get_index()
        context.FixInputPort(ego_velocity_index, frame_velocity1)

        pose_vector2 = PoseVector()
        pose_vector2.set_translation([6., 0., 0.])
        bundle = PoseBundle(num_poses=1)
        bundle.set_pose(
            0, Isometry3(Quaternion(), pose_vector2.get_translation()))
        traffic_index = idm.traffic_input().get_index()
        context.FixInputPort(traffic_index,
                             framework.AbstractValue.Make(bundle))

        # Verify the inputs.
        pose_vector_eval = idm.EvalVectorInput(context, 0)
        self.assertTrue(
            np.allclose(pose_vector1.get_translation(),
                        pose_vector_eval.get_translation()))
        frame_velocity_eval = idm.EvalVectorInput(context, 1)
        self.assertTrue(
            np.allclose(frame_velocity1.get_velocity().translational(),
                        frame_velocity_eval.get_velocity().translational()))
        self.assertTrue(
            np.allclose(frame_velocity1.get_velocity().rotational(),
                        frame_velocity_eval.get_velocity().rotational()))

        # Verify the outputs.
        idm.CalcOutput(context, output)
        accel_command_index = idm.acceleration_output().get_index()
        accel = output.get_vector_data(accel_command_index)
        self.assertEqual(len(accel.get_value()), 1)
        self.assertTrue(accel.get_value() < 0.)
Beispiel #6
0
    def controller(
            X_TPdes: RigidTransform,
            V_TPdes: SpatialVelocity,
            x: VectorArg(nx),
    ) -> ForceList:
        # Cribbed from:
        # https://github.com/gizatt/drake_hydra_interact/tree/cce3ecbb
        frame_W = plant.world_frame()
        plant.SetPositionsAndVelocities(context, model_instance, x)

        X_WT = plant.CalcRelativeTransform(context, frame_W, frame_T)
        V_WT = me.get_frame_spatial_velocity(plant, context, frame_W, frame_T)
        X_WPdes = X_WT @ X_TPdes
        V_WPdes = V_WT.ComposeWithMovingFrameVelocity(
            X_WT.translation(), V_TPdes.Rotate(X_WT.rotation()))

        X_WP = plant.CalcRelativeTransform(context, frame_W, frame_P)
        R_WP = X_WP.rotation()
        V_WP = me.get_frame_spatial_velocity(plant, context, frame_W, frame_P)
        # Transform to "negative error": desired w.r.t. actual,
        # expressed in world frame (for applying the force).
        p_PPdes_W = X_WPdes.translation() - X_WP.translation()
        # N.B. We don't project away symmetry here because we're expecting
        # smooth trajectories (for now).
        R_PPdes = R_WP.inverse() @ X_WPdes.rotation()
        axang3_PPdes = rotation_matrix_to_axang3(R_PPdes)
        axang3_PPdes_W = R_WP @ axang3_PPdes
        V_PPdes_W = V_WPdes - V_WP
        # Compute wrench components.
        f_P_W = Kp_xyz @ p_PPdes_W + Kd_xyz @ V_PPdes_W.translational()
        tau_P_W = (Kp_rot(R_WP) @ axang3_PPdes_W +
                   Kd_rot(R_WP) @ V_PPdes_W.rotational())
        F_P_W_feedback = SpatialForce(tau=tau_P_W, f=f_P_W)
        # Add gravity-compensation term.
        g_W = plant.gravity_field().gravity_vector()
        F_Pcm_W = SpatialForce(tau=[0, 0, 0], f=-g_W * M_PPo_P.get_mass())
        p_PoPcm_W = R_WP @ M_PPo_P.get_com()
        F_P_W_feedforward = F_Pcm_W.Shift(-p_PoPcm_W)
        # Package it up.
        F_P_W = F_P_W_feedback + F_P_W_feedforward
        external_force = ExternallyAppliedSpatialForce()
        external_force.body_index = frame_P.body().index()
        external_force.F_Bq_W = F_P_W
        external_force.p_BoBq_B = (
            frame_P.GetFixedPoseInBodyFrame().translation())
        return ForceList([external_force])
def get_frame_spatial_velocity(plant, context, frame_T, frame_F, frame_E=None):
    """
    Returns:
        SpatialVelocity of frame F's origin w.r.t. frame T, expressed in E
        (which is frame T if unspecified).
    """
    if frame_E is None:
        frame_E = frame_T
    Jv_TF_E = plant.CalcJacobianSpatialVelocity(
        context,
        with_respect_to=JacobianWrtVariable.kV,
        frame_B=frame_F,
        p_BP=[0, 0, 0],
        frame_A=frame_T,
        frame_E=frame_E,
    )
    v = plant.GetVelocities(context)
    V_TF_E = SpatialVelocity(Jv_TF_E @ v)
    return V_TF_E
Beispiel #8
0
    def test_closest_pose(self):
        ClosestPose()
        rg = make_two_lane_road()
        lane_0 = rg.junction(0).segment(0).lane(0)
        lane_1 = rg.junction(0).segment(0).lane(1)
        lane_pos = LanePosition(s=1., r=2., h=3.)
        road_pos = RoadPosition(lane=lane_0, pos=lane_pos)
        w = [5., 7., 9.]
        v = [11., 13., 15.]
        frame_velocity = FrameVelocity(SpatialVelocity(w=w, v=v))
        road_odom = RoadOdometry(road_position=road_pos,
                                 frame_velocity=frame_velocity)

        closest_pose = ClosestPose(odom=road_odom, dist=12.7)
        self.assertEqual(closest_pose.odometry.lane.id().string(),
                         lane_0.id().string())
        self.assertEqual(closest_pose.distance, 12.7)

        closest_pose.odometry.lane = lane_1
        closest_pose.distance = 5.9
        self.assertEqual(closest_pose.odometry.lane.id().string(),
                         lane_1.id().string())
        self.assertEqual(closest_pose.distance, 5.9)
Beispiel #9
0
    def test_multibody_tree_kinematics(self):
        file_name = FindResourceOrThrow(
            "drake/examples/double_pendulum/models/double_pendulum.sdf")
        plant = MultibodyPlant()
        Parser(plant).AddModelFromFile(file_name)
        plant.Finalize()
        context = plant.CreateDefaultContext()
        world_frame = plant.world_frame()
        base = plant.GetBodyByName("base")
        base_frame = plant.GetFrameByName("base")
        X_WL = plant.CalcRelativeTransform(
            context, frame_A=world_frame, frame_B=base_frame)
        self.assertIsInstance(X_WL, RigidTransform)

        p_AQi = plant.CalcPointsPositions(
            context=context, frame_B=base_frame,
            p_BQi=np.array([[0, 1, 2], [10, 11, 12]]).T,
            frame_A=world_frame).T
        self.assertTupleEqual(p_AQi.shape, (2, 3))

        Jv_WL = plant.CalcFrameGeometricJacobianExpressedInWorld(
            context=context, frame_B=base_frame,
            p_BoFo_B=[0, 0, 0])
        self.assertTupleEqual(Jv_WL.shape, (6, plant.num_velocities()))

        nq = plant.num_positions()
        nv = plant.num_velocities()
        wrt_list = [
            (JacobianWrtVariable.kQDot, nq),
            (JacobianWrtVariable.kV, nv),
        ]
        for wrt, nw in wrt_list:
            Jw_ABp_E = plant.CalcJacobianSpatialVelocity(
                context=context, with_respect_to=wrt, frame_B=base_frame,
                p_BP=np.zeros(3), frame_A=world_frame,
                frame_E=world_frame)
            self.assert_sane(Jw_ABp_E)
            self.assertEqual(Jw_ABp_E.shape, (6, nw))

        # Compute body pose.
        X_WBase = plant.EvalBodyPoseInWorld(context, base)
        self.assertIsInstance(X_WBase, RigidTransform)

        # Set pose for the base.
        X_WB_desired = RigidTransform.Identity()
        X_WB = plant.CalcRelativeTransform(context, world_frame, base_frame)
        plant.SetFreeBodyPose(
            context=context, body=base, X_WB=X_WB_desired)
        self.assertTrue(np.allclose(X_WB.matrix(), X_WB_desired.matrix()))

        # Set a spatial velocity for the base.
        v_WB = SpatialVelocity(w=[1, 2, 3], v=[4, 5, 6])
        plant.SetFreeBodySpatialVelocity(
            context=context, body=base, V_WB=v_WB)
        v_base = plant.EvalBodySpatialVelocityInWorld(context, base)
        self.assertTrue(np.allclose(v_base.rotational(), v_WB.rotational()))
        self.assertTrue(np.allclose(v_base.translational(),
                                    v_WB.translational()))

        # Compute accelerations.
        vdot = np.zeros(nv)
        A_WB_array = plant.CalcSpatialAccelerationsFromVdot(
            context=context, known_vdot=vdot)
        self.assertEqual(len(A_WB_array), plant.num_bodies())
    def test_pose_aggregator(self):
        aggregator = PoseAggregator()
        # - Set-up.
        instance_id1 = 5  # Supply a random instance id.
        port1 = aggregator.AddSingleInput("pose_only", instance_id1)
        self.assertEqual(port1.get_data_type(), PortDataType.kVectorValued)
        self.assertEqual(port1.size(), PoseVector.kSize)
        instance_id2 = 42  # Supply another random, but unique, id.
        ports2 = aggregator.AddSinglePoseAndVelocityInput(
            "pose_and_velocity", instance_id2)
        self.assertEqual(ports2.pose_input_port.get_data_type(),
                         PortDataType.kVectorValued)
        self.assertEqual(ports2.pose_input_port.size(), PoseVector.kSize)
        self.assertEqual(ports2.velocity_input_port.get_data_type(),
                         PortDataType.kVectorValued)
        self.assertEqual(ports2.velocity_input_port.size(),
                         FrameVelocity.kSize)
        num_poses = 1
        port3 = aggregator.AddBundleInput("pose_bundle", num_poses)
        self.assertEqual(port3.get_data_type(), PortDataType.kAbstractValued)

        # - CalcOutput.
        self.assertEqual(
            aggregator.get_output_port(0).get_data_type(),
            PortDataType.kAbstractValued)
        context = aggregator.CreateDefaultContext()
        output = aggregator.AllocateOutput()

        p1 = [0, 1, 2]
        pose1 = PoseVector()
        pose1.set_translation(p1)
        p2 = [5, 7, 9]
        pose2 = PoseVector()
        pose2.set_translation(p2)
        w = [0.3, 0.4, 0.5]
        v = [0.5, 0.6, 0.7]
        velocity = FrameVelocity()
        velocity.set_velocity(SpatialVelocity(w=w, v=v))
        p3 = [50, 70, 90]
        q3 = Quaternion(wxyz=normalized([0.1, 0.3, 0.7, 0.9]))
        bundle = PoseBundle(num_poses)
        bundle.set_transform(0, RigidTransform(quaternion=q3, p=p3))
        bundle_value = AbstractValue.Make(bundle)

        aggregator.get_input_port(0).FixValue(context, pose1)
        aggregator.get_input_port(1).FixValue(context, pose2)
        aggregator.get_input_port(2).FixValue(context, velocity)
        aggregator.get_input_port(3).FixValue(context, bundle_value)

        aggregator.CalcOutput(context, output)

        value = output.get_data(0).get_value()
        self.assertEqual(value.get_num_poses(), 3)
        pose1_actual = RigidTransform(p=p1)
        self.assertTrue((value.get_transform(0).GetAsMatrix34() ==
                         pose1_actual.GetAsMatrix34()).all())
        pose2_actual = RigidTransform(p=p2)
        self.assertTrue((value.get_transform(1).GetAsMatrix34() ==
                         pose2_actual.GetAsMatrix34()).all())
        vel_actual = value.get_velocity(1).get_velocity()
        self.assertTrue(np.allclose(vel_actual.rotational(), w))
        self.assertTrue(np.allclose(vel_actual.translational(), v))
        pose3_actual = RigidTransform(quaternion=q3, p=p3)
        self.assertTrue((value.get_transform(2).GetAsMatrix34() ==
                         pose3_actual.GetAsMatrix34()).all())
Beispiel #11
0
    def test_multibody_tree_kinematics(self):
        file_name = FindResourceOrThrow(
            "drake/examples/double_pendulum/models/double_pendulum.sdf")
        plant = MultibodyPlant()
        Parser(plant).AddModelFromFile(file_name)
        plant.Finalize()
        context = plant.CreateDefaultContext()
        world_frame = plant.world_frame()
        base = plant.GetBodyByName("base")
        base_frame = plant.GetFrameByName("base")
        X_WL = plant.CalcRelativeTransform(context,
                                           frame_A=world_frame,
                                           frame_B=base_frame)
        self.assertIsInstance(X_WL, RigidTransform)

        p_AQi = plant.CalcPointsPositions(context=context,
                                          frame_B=base_frame,
                                          p_BQi=np.array([[0, 1, 2],
                                                          [10, 11, 12]]).T,
                                          frame_A=world_frame).T
        self.assertTupleEqual(p_AQi.shape, (2, 3))

        Jv_WL = plant.CalcFrameGeometricJacobianExpressedInWorld(
            context=context, frame_B=base_frame, p_BoFo_B=[0, 0, 0])
        self.assertTupleEqual(Jv_WL.shape, (6, plant.num_velocities()))

        nq = plant.num_positions()
        nv = plant.num_velocities()
        wrt_list = [
            (JacobianWrtVariable.kQDot, nq),
            (JacobianWrtVariable.kV, nv),
        ]
        for wrt, nw in wrt_list:
            Jw_ABp_E = plant.CalcJacobianSpatialVelocity(context=context,
                                                         with_respect_to=wrt,
                                                         frame_B=base_frame,
                                                         p_BP=np.zeros(3),
                                                         frame_A=world_frame,
                                                         frame_E=world_frame)
            self.assert_sane(Jw_ABp_E)
            self.assertEqual(Jw_ABp_E.shape, (6, nw))

        # Compute body pose.
        X_WBase = plant.EvalBodyPoseInWorld(context, base)
        self.assertIsInstance(X_WBase, RigidTransform)

        # Set pose for the base.
        X_WB_desired = RigidTransform.Identity()
        X_WB = plant.CalcRelativeTransform(context, world_frame, base_frame)
        plant.SetFreeBodyPose(context=context, body=base, X_WB=X_WB_desired)
        self.assertTrue(np.allclose(X_WB.matrix(), X_WB_desired.matrix()))

        # Set a spatial velocity for the base.
        v_WB = SpatialVelocity(w=[1, 2, 3], v=[4, 5, 6])
        plant.SetFreeBodySpatialVelocity(context=context, body=base, V_WB=v_WB)
        v_base = plant.EvalBodySpatialVelocityInWorld(context, base)
        self.assertTrue(np.allclose(v_base.rotational(), v_WB.rotational()))
        self.assertTrue(
            np.allclose(v_base.translational(), v_WB.translational()))

        # Compute accelerations.
        vdot = np.zeros(nv)
        A_WB_array = plant.CalcSpatialAccelerationsFromVdot(context=context,
                                                            known_vdot=vdot)
        self.assertEqual(len(A_WB_array), plant.num_bodies())