def main(args): eddl.download_cifar10() num_classes = 10 in_ = eddl.Input([3, 32, 32]) layer = in_ layer = eddl.MaxPool(eddl.ReLu(Normalization( eddl.Conv(layer, 32, [3, 3], [1, 1]) )), [2, 2]) layer = eddl.MaxPool(eddl.ReLu(Normalization( eddl.Conv(layer, 64, [3, 3], [1, 1]) )), [2, 2]) layer = eddl.MaxPool(eddl.ReLu(Normalization( eddl.Conv(layer, 128, [3, 3], [1, 1]) )), [2, 2]) layer = eddl.MaxPool(eddl.ReLu(Normalization( eddl.Conv(layer, 256, [3, 3], [1, 1]) )), [2, 2]) layer = eddl.GlobalMaxPool(layer) layer = eddl.Flatten(layer) layer = eddl.Activation(eddl.Dense(layer, 128), "relu") out = eddl.Softmax(eddl.Dense(layer, num_classes)) net = eddl.Model([in_], [out]) eddl.build( net, eddl.adam(0.001), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU(mem=args.mem) if args.gpu else eddl.CS_CPU(mem=args.mem) ) eddl.summary(net) eddl.plot(net, "model.pdf") x_train = Tensor.load("cifar_trX.bin") y_train = Tensor.load("cifar_trY.bin") x_train.div_(255.0) x_test = Tensor.load("cifar_tsX.bin") y_test = Tensor.load("cifar_tsY.bin") x_test.div_(255.0) if args.small: x_train = x_train.select([":5000"]) y_train = y_train.select([":5000"]) x_test = x_test.select([":1000"]) y_test = y_test.select([":1000"]) for i in range(args.epochs): eddl.fit(net, [x_train], [y_train], args.batch_size, 1) eddl.evaluate(net, [x_test], [y_test], bs=args.batch_size) print("All done")
epochs = 50 if gpu else 1 batch_size = 50 num_classes = 10 bn = int(sys.argv[1]) == 1 initializer = eddl.GlorotUniform if bn else eddl.HeUniform inp = eddl.Input([3, 32, 32]) l = inp l = defblock(l, bn, 64, 2, initializer) l = defblock(l, bn, 128, 2, initializer) l = defblock(l, bn, 256, 4, initializer) l = defblock(l, bn, 512, 4, initializer) l = defblock(l, bn, 512, 4, initializer) l = eddl.Flatten(l) for i in range(2): l = initializer(eddl.Dense(l, 4096)) if (bn): l = eddl.BatchNormalization(l, 0.99, 0.001, True, "") l = eddl.ReLu(l) out = eddl.Softmax(initializer(eddl.Dense(l, num_classes))) net = eddl.Model([inp], [out]) eddl.plot(net, "model.pdf") eddl.build(net, eddl.adam(0.00001), ["soft_cross_entropy"], ["categorical_accuracy"], eddl.CS_GPU() if gpu else eddl.CS_CPU())