Beispiel #1
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    if args.input.endswith(".cs"):
        log.debug("Detected CryoSPARC 2+ .cs file")
        cs = np.load(args.input)
        try:
            df = metadata.parse_cryosparc_2_cs(cs,
                                               passthrough=args.passthrough,
                                               minphic=args.minphic)
        except (KeyError, ValueError) as e:
            log.error(e.message)
            log.error(
                "A passthrough file may be required (check inside the cryoSPARC 2+ job directory)"
            )
            log.debug(e, exc_info=True)
            return 1
    else:
        log.debug("Detected CryoSPARC 0.6.5 .csv file")
        meta = metadata.parse_cryosparc_065_csv(
            args.input)  # Read cryosparc metadata file.
        df = metadata.cryosparc_065_csv2star(meta, args.minphic)

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.copy_micrograph_coordinates is not None:
        coord_star = pd.concat(
            (star.parse_star(inp, keep_index=False)
             for inp in glob(args.copy_micrograph_coordinates)),
            join="inner")
        star.augment_star_ucsf(coord_star)
        star.augment_star_ucsf(df)
        key = star.merge_key(df, coord_star)
        log.debug("Coordinates merge key: %s" % key)
        if args.cached or key == star.Relion.IMAGE_NAME:
            fields = star.Relion.MICROGRAPH_COORDS
        else:
            fields = star.Relion.MICROGRAPH_COORDS + [
                star.UCSF.IMAGE_INDEX, star.UCSF.IMAGE_PATH
            ]
        df = star.smart_merge(df, coord_star, fields=fields, key=key)
        star.simplify_star_ucsf(df)

    if args.micrograph_path is not None:
        df = star.replace_micrograph_path(df,
                                          args.micrograph_path,
                                          inplace=True)

    if args.transform is not None:
        r = np.array(json.loads(args.transform))
        df = star.transform_star(df, r, inplace=True)

    # Write Relion .star file with correct headers.
    star.write_star(args.output, df, reindex=True)
    log.info("Output fields: %s" % ", ".join(df.columns))
    return 0
Beispiel #2
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))
    # apix = args.apix = hdr["xlen"] / hdr["nx"]

    for fn in args.input:
        if not (fn.endswith(".star") or fn.endswith(".mrcs")
                or fn.endswith(".mrc")):
            log.error("Only .star, .mrc, and .mrcs files supported")
            return 1

    first_ptcl = 0
    dfs = []
    with mrc.ZSliceWriter(args.output) as writer:
        for fn in args.input:
            if fn.endswith(".star"):
                df = star.parse_star(fn, keep_index=False)
                star.augment_star_ucsf(df)
                df = df.sort_values([
                    star.UCSF.IMAGE_ORIGINAL_PATH,
                    star.UCSF.IMAGE_ORIGINAL_INDEX
                ])
                gb = df.groupby(star.UCSF.IMAGE_ORIGINAL_PATH)
                for name, g in gb:
                    with mrc.ZSliceReader(name) as reader:
                        for i in g[star.UCSF.IMAGE_ORIGINAL_INDEX].values:
                            writer.write(reader.read(i))
            else:
                with mrc.ZSliceReader(fn) as reader:
                    for img in reader:
                        writer.write(img)
                    df = pd.DataFrame(
                        {star.UCSF.IMAGE_ORIGINAL_INDEX: np.arange(reader.nz)})
                df[star.UCSF.IMAGE_ORIGINAL_PATH] = fn

            if args.star is not None:
                df[star.UCSF.IMAGE_INDEX] = np.arange(first_ptcl,
                                                      first_ptcl + df.shape[0])
                df[star.UCSF.IMAGE_PATH] = writer.path
                df["index"] = df[star.UCSF.IMAGE_INDEX]
                star.simplify_star_ucsf(df)
                dfs.append(df)
            first_ptcl += df.shape[0]

            if args.star is not None:
                df = pd.concat(dfs, join="inner")
                # df = pd.concat(dfs)
                # df = df.dropna(df, axis=1, how="any")
                star.write_star(args.star, df, reindex=True)

    return 0
Beispiel #3
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    if args.input[0].endswith(".cs"):
        log.debug("Detected CryoSPARC 2+ .cs file")
        cs = np.load(args.input[0])
        try:
            df = metadata.parse_cryosparc_2_cs(cs, passthroughs=args.input[1:], minphic=args.minphic,
                                               boxsize=args.boxsize, swapxy=args.swapxy,
                                               invertx=args.invertx, inverty=args.inverty)
        except (KeyError, ValueError) as e:
            log.error(e, exc_info=True)
            log.error("Required fields could not be mapped. Are you using the right input file(s)?")
            return 1
    else:
        log.debug("Detected CryoSPARC 0.6.5 .csv file")
        if len(args.input) > 1:
            log.error("Only one file at a time supported for CryoSPARC 0.6.5 .csv format")
            return 1
        meta = metadata.parse_cryosparc_065_csv(args.input[0])  # Read cryosparc metadata file.
        df = metadata.cryosparc_065_csv2star(meta, args.minphic)

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.copy_micrograph_coordinates is not None:
        df = star.augment_star_ucsf(df, inplace=True)
        coord_star = pd.concat(
            (star.parse_star(inp, keep_index=False, augment=True) for inp in
             glob(args.copy_micrograph_coordinates)), join="inner")
        key = star.merge_key(df, coord_star)
        log.debug("Coordinates merge key: %s" % key)
        if args.cached or key == star.Relion.IMAGE_NAME:
            fields = star.Relion.MICROGRAPH_COORDS
        else:
            fields = star.Relion.MICROGRAPH_COORDS + [star.UCSF.IMAGE_INDEX, star.UCSF.IMAGE_PATH]
        df = star.smart_merge(df, coord_star, fields=fields, key=key)
        star.simplify_star_ucsf(df)

    if args.micrograph_path is not None:
        df = star.replace_micrograph_path(df, args.micrograph_path, inplace=True)

    if args.transform is not None:
        r = np.array(json.loads(args.transform))
        df = star.transform_star(df, r, inplace=True)

    df = star.check_defaults(df, inplace=True)

    if args.relion2:
        df = star.remove_new_relion31(df, inplace=True)
        star.write_star(args.output, df, resort_records=True, optics=False)
    else:
        df = star.remove_deprecated_relion2(df, inplace=True)
        star.write_star(args.output, df, resort_records=True, optics=True)

    log.info("Output fields: %s" % ", ".join(df.columns))
    return 0
Beispiel #4
0
def main(args):
    pyfftw.interfaces.cache.enable()

    refmap = mrc.read(args.key, compat="relion")
    df = star.parse_star(args.input, keep_index=False)
    star.augment_star_ucsf(df)
    refmap_ft = vop.vol_ft(refmap, threads=args.threads)

    apix = star.calculate_apix(df)
    sz = refmap_ft.shape[0] // 2 - 1
    sx, sy = np.meshgrid(rfftfreq(sz), fftfreq(sz))
    s = np.sqrt(sx**2 + sy**2)
    r = s * sz
    r = np.round(r).astype(np.int64)
    r[r > sz // 2] = sz // 2 + 1
    a = np.arctan2(sy, sx)

    def1 = df["rlnDefocusU"].values
    def2 = df["rlnDefocusV"].values
    angast = df["rlnDefocusAngle"].values
    phase = df["rlnPhaseShift"].values
    kv = df["rlnVoltage"].values
    ac = df["rlnAmplitudeContrast"].values
    cs = df["rlnSphericalAberration"].values
    xshift = df["rlnOriginX"].values
    yshift = df["rlnOriginY"].values

    score = np.zeros(df.shape[0])

    # TODO parallelize
    for i, row in df.iterrows():
        xcor = particle_xcorr(row, refmap_ft)

    if args.top is None:
        args.top = df.shape[0]

    top = df.iloc[np.argsort(score)][:args.top]
    star.simplify_star_ucsf(top)
    star.write_star(args.output, top)
    return 0
Beispiel #5
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))
    df = star.parse_star(args.input, keep_index=False)
    star.augment_star_ucsf(df)
    maxshift = np.round(np.max(np.abs(df[star.Relion.ORIGINS].values)))

    if args.map is not None:
        if args.map.endswith(".npy"):
            log.info("Reading precomputed 3D FFT of volume")
            f3d = np.load(args.map)
            log.info("Finished reading 3D FFT of volume")
            if args.size is None:
                args.size = (f3d.shape[0] - 3) // args.pfac
        else:
            vol = mrc.read(args.map, inc_header=False, compat="relion")
            if args.mask is not None:
                mask = mrc.read(args.mask, inc_header=False, compat="relion")
                vol *= mask
            if args.size is None:
                args.size = vol.shape[0]
            if args.crop is not None and args.size // 2 < maxshift + args.crop // 2:
                log.error(
                    "Some shifts are too large to crop (maximum crop is %d)" %
                    (args.size - 2 * maxshift))
                return 1
            log.info("Preparing 3D FFT of volume")
            f3d = vop.vol_ft(vol, pfac=args.pfac, threads=args.threads)
            log.info("Finished 3D FFT of volume")
    else:
        log.error("Please supply a map")
        return 1

    sz = (f3d.shape[0] - 3) // args.pfac
    apix = star.calculate_apix(df) * np.double(args.size) / sz
    sx, sy = np.meshgrid(np.fft.rfftfreq(sz), np.fft.fftfreq(sz))
    s = np.sqrt(sx**2 + sy**2)
    a = np.arctan2(sy, sx)
    log.info("Projection size is %d, unpadded volume size is %d" %
             (args.size, sz))
    log.info("Effective pixel size is %f A/px" % apix)

    if args.subtract and args.size != sz:
        log.error("Volume and projections must be same size when subtracting")
        return 1

    if args.crop is not None and args.size // 2 < maxshift + args.crop // 2:
        log.error("Some shifts are too large to crop (maximum crop is %d)" %
                  (args.size - 2 * maxshift))
        return 1

    ift = None

    with mrc.ZSliceWriter(args.output, psz=apix) as zsw:
        for i, p in df.iterrows():
            f2d = project(f3d,
                          p,
                          s,
                          sx,
                          sy,
                          a,
                          pfac=args.pfac,
                          apply_ctf=args.ctf,
                          size=args.size,
                          flip_phase=args.flip)
            if ift is None:
                ift = irfft2(f2d.copy(),
                             threads=args.threads,
                             planner_effort="FFTW_ESTIMATE",
                             auto_align_input=True,
                             auto_contiguous=True)
            proj = fftshift(
                ift(f2d.copy(),
                    np.zeros(ift.output_shape, dtype=ift.output_dtype)))
            log.debug("%f +/- %f" % (np.mean(proj), np.std(proj)))
            if args.subtract:
                with mrc.ZSliceReader(p["ucsfImagePath"]) as zsr:
                    img = zsr.read(p["ucsfImageIndex"])
                log.debug("%f +/- %f" % (np.mean(img), np.std(img)))
                proj = img - proj
            if args.crop is not None:
                orihalf = args.size // 2
                newhalf = args.crop // 2
                x = orihalf - np.int(np.round(p[star.Relion.ORIGINX]))
                y = orihalf - np.int(np.round(p[star.Relion.ORIGINY]))
                proj = proj[y - newhalf:y + newhalf, x - newhalf:x + newhalf]
            zsw.write(proj)
            log.debug(
                "%d@%s: %d/%d" %
                (p["ucsfImageIndex"], p["ucsfImagePath"], i + 1, df.shape[0]))

    if args.star is not None:
        log.info("Writing output .star file")
        if args.crop is not None:
            df = star.recenter(df, inplace=True)
        if args.subtract:
            df[star.UCSF.IMAGE_ORIGINAL_PATH] = df[star.UCSF.IMAGE_PATH]
            df[star.UCSF.IMAGE_ORIGINAL_INDEX] = df[star.UCSF.IMAGE_INDEX]
        df[star.UCSF.IMAGE_PATH] = args.output
        df[star.UCSF.IMAGE_INDEX] = np.arange(df.shape[0])
        star.simplify_star_ucsf(df)
        star.write_star(args.star, df)
    return 0
Beispiel #6
0
def main(args):
    if args.info:
        args.input.append(args.output)

    df = pd.concat(
        (star.parse_star(inp, augment=args.augment) for inp in args.input),
        join="inner")

    dfaux = None

    if args.cls is not None:
        df = star.select_classes(df, args.cls)

    if args.info:
        if star.is_particle_star(df) and star.Relion.CLASS in df.columns:
            c = df[star.Relion.CLASS].value_counts()
            print("%s particles in %d classes" %
                  ("{:,}".format(df.shape[0]), len(c)))
            print("    ".join([
                '%d: %s (%.2f %%)' % (i, "{:,}".format(s), 100. * s / c.sum())
                for i, s in iteritems(c.sort_index())
            ]))
        elif star.is_particle_star(df):
            print("%s particles" % "{:,}".format(df.shape[0]))
        if star.Relion.MICROGRAPH_NAME in df.columns:
            mgraphcnt = df[star.Relion.MICROGRAPH_NAME].value_counts()
            print(
                "%s micrographs, %s +/- %s particles per micrograph" %
                ("{:,}".format(len(mgraphcnt)), "{:,.3f}".format(
                    np.mean(mgraphcnt)), "{:,.3f}".format(np.std(mgraphcnt))))
        try:
            print("%f A/px (%sX magnification)" %
                  (star.calculate_apix(df), "{:,.0f}".format(
                      df[star.Relion.MAGNIFICATION][0])))
        except KeyError:
            pass
        if len(df.columns.intersection(star.Relion.ORIGINS3D)) > 0:
            print("Largest shift is %f pixels" % np.max(
                np.abs(df[df.columns.intersection(
                    star.Relion.ORIGINS3D)].values)))
        return 0

    if args.drop_angles:
        df.drop(star.Relion.ANGLES, axis=1, inplace=True, errors="ignore")

    if args.drop_containing is not None:
        containing_fields = [
            f for q in args.drop_containing for f in df.columns if q in f
        ]
        if args.invert:
            containing_fields = df.columns.difference(containing_fields)
        df.drop(containing_fields, axis=1, inplace=True, errors="ignore")

    if args.offset_group is not None:
        df[star.Relion.GROUPNUMBER] += args.offset_group

    if args.restack is not None:
        if not args.augment:
            star.augment_star_ucsf(df, inplace=True)
        star.set_original_fields(df, inplace=True)
        df[star.UCSF.IMAGE_PATH] = args.restack
        df[star.UCSF.IMAGE_INDEX] = np.arange(df.shape[0])

    if args.subsample_micrographs is not None:
        if args.bootstrap is not None:
            print("Only particle sampling allows bootstrapping")
            return 1
        mgraphs = df[star.Relion.MICROGRAPH_NAME].unique()
        if args.subsample_micrographs < 1:
            args.subsample_micrographs = np.int(
                max(np.round(args.subsample_micrographs * len(mgraphs)), 1))
        else:
            args.subsample_micrographs = np.int(args.subsample_micrographs)
        ind = np.random.choice(len(mgraphs),
                               size=args.subsample_micrographs,
                               replace=False)
        mask = df[star.Relion.MICROGRAPH_NAME].isin(mgraphs[ind])
        if args.auxout is not None:
            dfaux = df.loc[~mask]
        df = df.loc[mask]

    if args.subsample is not None and args.suffix == "":
        if args.subsample < 1:
            args.subsample = np.int(
                max(np.round(args.subsample * df.shape[0]), 1))
        else:
            args.subsample = np.int(args.subsample)
        ind = np.random.choice(df.shape[0], size=args.subsample, replace=False)
        mask = df.index.isin(ind)
        if args.auxout is not None:
            dfaux = df.loc[~mask]
        df = df.loc[mask]

    if args.copy_angles is not None:
        angle_star = star.parse_star(args.copy_angles, augment=args.augment)
        df = star.smart_merge(df,
                              angle_star,
                              fields=star.Relion.ANGLES,
                              key=args.merge_key)

    if args.copy_alignments is not None:
        align_star = star.parse_star(args.copy_alignments,
                                     augment=args.augment)
        df = star.smart_merge(df,
                              align_star,
                              fields=star.Relion.ALIGNMENTS,
                              key=args.merge_key)

    if args.copy_reconstruct_images is not None:
        recon_star = star.parse_star(args.copy_reconstruct_images,
                                     augment=args.augment)
        df[star.Relion.RECONSTRUCT_IMAGE_NAME] = recon_star[
            star.Relion.IMAGE_NAME]

    if args.transform is not None:
        if args.transform.count(",") == 2:
            r = geom.euler2rot(
                *np.deg2rad([np.double(s) for s in args.transform.split(",")]))
        else:
            r = np.array(json.loads(args.transform))
        df = star.transform_star(df, r, inplace=True)

    if args.invert_hand:
        df = star.invert_hand(df, inplace=True)

    if args.copy_paths is not None:
        path_star = star.parse_star(args.copy_paths)
        star.set_original_fields(df, inplace=True)
        df[star.Relion.IMAGE_NAME] = path_star[star.Relion.IMAGE_NAME]

    if args.copy_ctf is not None:
        ctf_star = pd.concat((star.parse_star(inp, augment=args.augment)
                              for inp in glob.glob(args.copy_ctf)),
                             join="inner")
        df = star.smart_merge(df,
                              ctf_star,
                              star.Relion.CTF_PARAMS,
                              key=args.merge_key)

    if args.copy_micrograph_coordinates is not None:
        coord_star = pd.concat(
            (star.parse_star(inp, augment=args.augment)
             for inp in glob.glob(args.copy_micrograph_coordinates)),
            join="inner")
        df = star.smart_merge(df,
                              coord_star,
                              fields=star.Relion.MICROGRAPH_COORDS,
                              key=args.merge_key)

    if args.scale is not None:
        star.scale_coordinates(df, args.scale, inplace=True)
        star.scale_origins(df, args.scale, inplace=True)
        star.scale_magnification(df, args.scale, inplace=True)

    if args.scale_particles is not None:
        star.scale_origins(df, args.scale_particles, inplace=True)
        star.scale_magnification(df, args.scale_particles, inplace=True)

    if args.scale_coordinates is not None:
        star.scale_coordinates(df, args.scale_coordinates, inplace=True)

    if args.scale_origins is not None:
        star.scale_origins(df, args.scale_origins, inplace=True)

    if args.scale_magnification is not None:
        star.scale_magnification(df, args.scale_magnification, inplace=True)

    if args.scale_apix is not None:
        star.scale_apix(df, args.scale_apix, inplace=True)

    if args.recenter:
        df = star.recenter(df, inplace=True)

    if args.zero_origins:
        df = star.zero_origins(df, inplace=True)

    if args.pick:
        df.drop(df.columns.difference(star.Relion.PICK_PARAMS),
                axis=1,
                inplace=True,
                errors="ignore")

    if args.subsample is not None and args.suffix != "":
        if args.subsample < 1:
            print("Specific integer sample size")
            return 1
        nsamplings = args.bootstrap if args.bootstrap is not None else df.shape[
            0] / np.int(args.subsample)
        inds = np.random.choice(df.shape[0],
                                size=(nsamplings, np.int(args.subsample)),
                                replace=args.bootstrap is not None)
        for i, ind in enumerate(inds):
            star.write_star(
                os.path.join(
                    args.output,
                    os.path.basename(args.input[0])[:-5] + args.suffix +
                    "_%d" % (i + 1)), df.iloc[ind])

    if args.to_micrographs:
        df = star.to_micrographs(df)

    if args.micrograph_range:
        df.set_index(star.Relion.MICROGRAPH_NAME, inplace=True)
        m, n = [int(tok) for tok in args.micrograph_range.split(",")]
        mg = df.index.unique().sort_values()
        outside = list(range(0, m)) + list(range(n, len(mg)))
        dfaux = df.loc[mg[outside]].reset_index()
        df = df.loc[mg[m:n]].reset_index()

    if args.micrograph_path is not None:
        df = star.replace_micrograph_path(df,
                                          args.micrograph_path,
                                          inplace=True)

    if args.min_separation is not None:
        gb = df.groupby(star.Relion.MICROGRAPH_NAME)
        dupes = []
        for n, g in gb:
            nb = algo.query_connected(
                g[star.Relion.COORDS].values - g[star.Relion.ORIGINS],
                args.min_separation / star.calculate_apix(df))
            dupes.extend(g.index[~np.isnan(nb)])
        dfaux = df.loc[dupes]
        df.drop(dupes, inplace=True)

    if args.merge_source is not None:
        if args.merge_fields is not None:
            if "," in args.merge_fields:
                args.merge_fields = args.merge_fields.split(",")
            else:
                args.merge_fields = [args.merge_fields]
        else:
            print("Merge fields must be specified using --merge-fields")
            return 1
        if args.merge_key is not None:
            if "," in args.merge_key:
                args.merge_key = args.merge_key.split(",")
        if args.by_original:
            args.by_original = star.original_field(args.merge_key)
        else:
            args.by_original = args.merge_key
        merge_star = star.parse_star(args.merge_source, augment=args.augment)
        df = star.smart_merge(df,
                              merge_star,
                              fields=args.merge_fields,
                              key=args.merge_key,
                              left_key=args.by_original)

    if args.revert_original:
        df = star.revert_original(df, inplace=True)

    if args.set_optics is not None:
        tok = args.set_optics.split(",")
        df = star.set_optics_groups(df,
                                    sep=tok[0],
                                    idx=int(tok[1]),
                                    inplace=True)
        df.dropna(axis=0, how="any", inplace=True)

    if args.drop_optics_group is not None:
        idx = df[star.Relion.OPTICSGROUP].isin(args.drop_optics_group)
        if not np.any(idx):
            idx = df[star.Relion.OPTICSGROUPNAME].isin(args.drop_optics_group)
        if not np.any(idx):
            print("No group found to drop")
            return 1
        df = df.loc[~idx]

    if args.split_micrographs:
        dfs = star.split_micrographs(df)
        for mg in dfs:
            star.write_star(
                os.path.join(args.output,
                             os.path.basename(mg)[:-4]) + args.suffix, dfs[mg])
        return 0

    if args.auxout is not None and dfaux is not None:
        if not args.relion2:
            df = star.remove_deprecated_relion2(dfaux, inplace=True)
            star.write_star(args.output,
                            df,
                            resort_records=args.sort,
                            simplify=args.augment_output,
                            optics=True)
        else:
            df = star.remove_new_relion31(dfaux, inplace=True)
            star.write_star(args.output,
                            df,
                            resort_records=args.sort,
                            simplify=args.augment_output,
                            optics=False)

    if args.output is not None:
        if not args.relion2:  # Relion 3.1 style output.
            df = star.remove_deprecated_relion2(df, inplace=True)
            star.write_star(args.output,
                            df,
                            resort_records=args.sort,
                            simplify=args.augment_output,
                            optics=True)
        else:
            df = star.remove_new_relion31(df, inplace=True)
            star.write_star(args.output,
                            df,
                            resort_records=args.sort,
                            simplify=args.augment_output,
                            optics=False)
    return 0
Beispiel #7
0
def main(args):
    """
    Projection subtraction program entry point.
    :param args: Command-line arguments parsed by ArgumentParser.parse_args()
    :return: Exit status
    """
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))

    if args.dest is None and args.suffix == "":
        args.dest = ""
        args.suffix = "_subtracted"

    log.info("Reading particle .star file")
    df = star.parse_star(args.input, keep_index=False)
    star.augment_star_ucsf(df)
    if not args.original:
        df[star.UCSF.IMAGE_ORIGINAL_PATH] = df[star.UCSF.IMAGE_PATH]
        df[star.UCSF.IMAGE_ORIGINAL_INDEX] = df[star.UCSF.IMAGE_INDEX]
    df.sort_values(star.UCSF.IMAGE_ORIGINAL_PATH,
                   inplace=True,
                   kind="mergesort")
    gb = df.groupby(star.UCSF.IMAGE_ORIGINAL_PATH)
    df[star.UCSF.IMAGE_INDEX] = gb.cumcount()
    df[star.UCSF.IMAGE_PATH] = df[star.UCSF.IMAGE_ORIGINAL_PATH].map(
        lambda x: os.path.join(
            args.dest, args.prefix + os.path.basename(x).replace(
                ".mrcs", args.suffix + ".mrcs")))

    if args.submap_ft is None:
        log.info("Reading volume")
        submap = mrc.read(args.submap, inc_header=False, compat="relion")
        if args.submask is not None:
            log.info("Masking volume")
            submask = mrc.read(args.submask, inc_header=False, compat="relion")
            submap *= submask
        log.info("Preparing 3D FFT of volume")
        submap_ft = vop.vol_ft(submap,
                               pfac=args.pfac,
                               threads=min(args.threads, cpu_count()))
        log.info("Finished 3D FFT of volume")
    else:
        log.info("Loading 3D FFT from %s" % args.submap_ft)
        submap_ft = np.load(args.submap_ft)
        log.info("Loaded 3D FFT from %s" % args.submap_ft)

    sz = (submap_ft.shape[0] - 3) // args.pfac

    maxshift = np.round(np.max(np.abs(df[star.Relion.ORIGINS].values)))
    if args.crop is not None and sz < 2 * maxshift + args.crop:
        log.error("Some shifts are too large to crop (maximum crop is %d)" %
                  (sz - 2 * maxshift))
        return 1

    sx, sy = np.meshgrid(np.fft.rfftfreq(sz), np.fft.fftfreq(sz))
    s = np.sqrt(sx**2 + sy**2)
    r = s * sz
    r = np.round(r).astype(np.int64)
    r[r > sz // 2] = sz // 2 + 1
    nr = np.max(r) + 1
    a = np.arctan2(sy, sx)

    if args.refmap is not None:
        coefs_method = 1
        if args.refmap_ft is None:
            refmap = mrc.read(args.refmap, inc_header=False, compat="relion")
            refmap_ft = vop.vol_ft(refmap,
                                   pfac=args.pfac,
                                   threads=min(args.threads, cpu_count()))
        else:
            log.info("Loading 3D FFT from %s" % args.refmap_ft)
            refmap_ft = np.load(args.refmap_ft)
            log.info("Loaded 3D FFT from %s" % args.refmap_ft)
    else:
        coefs_method = 0
        refmap_ft = np.empty(submap_ft.shape, dtype=submap_ft.dtype)

    apix = star.calculate_apix(df)
    log.info("Computed pixel size is %f A" % apix)

    log.debug("Grouping particles by output stack")
    gb = df.groupby(star.UCSF.IMAGE_PATH)

    iothreads = threading.BoundedSemaphore(args.io_thread_pairs)
    qsize = args.io_queue_length
    fftthreads = args.fft_threads

    def init():
        global tls
        tls = threading.local()

    log.info("Instantiating thread pool with %d workers" % args.threads)
    pool = Pool(processes=args.threads, initializer=init)
    threads = []

    log.info("Performing projection subtraction")

    try:
        for fname, particles in gb:
            log.debug("Instantiating queue")
            queue = Queue.Queue(maxsize=qsize)
            log.debug("Create producer for %s" % fname)
            prod = threading.Thread(target=producer,
                                    args=(pool, queue, submap_ft, refmap_ft,
                                          fname, particles, sx, sy, s, a, apix,
                                          coefs_method, r, nr, fftthreads,
                                          args.crop, args.pfac))
            log.debug("Create consumer for %s" % fname)
            cons = threading.Thread(target=consumer,
                                    args=(queue, fname, apix, iothreads))
            threads.append((prod, cons))
            iothreads.acquire()
            log.debug("iotheads at %d" % iothreads._Semaphore__value)
            log.debug("Start consumer for %s" % fname)
            cons.start()
            log.debug("Start producer for %s" % fname)
            prod.start()
    except KeyboardInterrupt:
        log.debug("Main thread wants out!")

    for pair in threads:
        for thread in pair:
            try:
                thread.join()
            except RuntimeError as e:
                log.debug(e)

    pool.close()
    pool.join()
    pool.terminate()

    log.info("Finished projection subtraction")

    log.info("Writing output .star file")
    if args.crop is not None:
        df = star.recenter(df, inplace=True)
    star.simplify_star_ucsf(df)
    star.write_star(args.output, df)

    return 0
Beispiel #8
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))
    # apix = args.apix = hdr["xlen"] / hdr["nx"]

    for fn in args.input:
        if not (fn.endswith(".star") or fn.endswith(".mrcs") or
                fn.endswith(".mrc") or fn.endswith(".par")):
            log.error("Only .star, .mrc, .mrcs, and .par files supported")
            return 1

    first_ptcl = 0
    dfs = []
    with mrc.ZSliceWriter(args.output) as writer:
        for fn in args.input:
            if fn.endswith(".star"):
                df = star.parse_star(fn, augment=True)
                if args.cls is not None:
                    df = star.select_classes(df, args.cls)
                star.set_original_fields(df, inplace=True)
                if args.resort:
                    df = df.sort_values([star.UCSF.IMAGE_ORIGINAL_PATH,
                                         star.UCSF.IMAGE_ORIGINAL_INDEX])
                for idx, row in df.iterrows():
                    if args.stack_path is not None:
                        input_stack_path = os.path.join(args.stack_path, row[star.UCSF.IMAGE_ORIGINAL_PATH])
                    else:
                        input_stack_path = row[star.UCSF.IMAGE_ORIGINAL_PATH]
                    with mrc.ZSliceReader(input_stack_path) as reader:
                        i = row[star.UCSF.IMAGE_ORIGINAL_INDEX]
                        writer.write(reader.read(i))
            elif fn.endswith(".par"):
                if args.stack_path is None:
                    log.error(".par file input requires --stack-path")
                    return 1
                df = metadata.par2star(metadata.parse_fx_par(fn), data_path=args.stack_path)
                # star.set_original_fields(df, inplace=True)  # Redundant.
                star.augment_star_ucsf(df)
            elif fn.endswith(".csv"):
                return 1
            elif fn.endswith(".cs"):
                return 1
            else:
                if fn.endswith(".mrcs"):
                    with mrc.ZSliceReader(fn) as reader:
                        for img in reader:
                            writer.write(img)
                        df = pd.DataFrame(
                            {star.UCSF.IMAGE_ORIGINAL_INDEX: np.arange(reader.nz)})
                    df[star.UCSF.IMAGE_ORIGINAL_PATH] = fn
                else:
                    print("Unrecognized input file type")
                    return 1
            if args.star is not None:
                df[star.UCSF.IMAGE_INDEX] = np.arange(first_ptcl,
                                                      first_ptcl + df.shape[0])
                if args.abs_path:
                    df[star.UCSF.IMAGE_PATH] = writer.path
                else:
                    df[star.UCSF.IMAGE_PATH] = os.path.relpath(writer.path, os.path.dirname(args.star))
                df["index"] = df[star.UCSF.IMAGE_INDEX]
                star.simplify_star_ucsf(df)
                dfs.append(df)
            first_ptcl += df.shape[0]

    if args.star is not None:
        df = pd.concat(dfs, join="inner")
        # df = pd.concat(dfs)
        # df = df.dropna(df, axis=1, how="any")
        if not args.relion2:  # Relion 3.1 style output.
            df = star.remove_deprecated_relion2(df, inplace=True)
            star.write_star(args.star, df, resort_records=False, optics=True)
        else:
            df = star.remove_new_relion31(df, inplace=True)
            star.write_star(args.star, df, resort_records=False, optics=False)
    return 0
Beispiel #9
0
def main(args):
    log = logging.getLogger('root')
    hdlr = logging.StreamHandler(sys.stdout)
    log.addHandler(hdlr)
    log.setLevel(logging.getLevelName(args.loglevel.upper()))
    df = star.parse_star(args.input, keep_index=False)
    star.augment_star_ucsf(df)
    if args.map is not None:
        vol = mrc.read(args.map, inc_header=False, compat="relion")
        if args.mask is not None:
            mask = mrc.read(args.mask, inc_header=False, compat="relion")
            vol *= mask
    else:
        print("Please supply a map")
        return 1

    f3d = vop.vol_ft(vol, pfac=args.pfac, threads=args.threads)
    sz = f3d.shape[0] // 2 - 1
    sx, sy = np.meshgrid(np.fft.rfftfreq(sz), np.fft.fftfreq(sz))
    s = np.sqrt(sx**2 + sy**2)
    a = np.arctan2(sy, sx)

    ift = None

    with mrc.ZSliceWriter(args.output) as zsw:
        for i, p in df.iterrows():
            f2d = project(f3d,
                          p,
                          s,
                          sx,
                          sy,
                          a,
                          apply_ctf=args.ctf,
                          size=args.size)
            if ift is None:
                ift = irfft2(f2d.copy(),
                             threads=cpu_count(),
                             planner_effort="FFTW_ESTIMATE",
                             auto_align_input=True,
                             auto_contiguous=True)
            proj = fftshift(
                ift(f2d.copy(), np.zeros(vol.shape[:-1], dtype=vol.dtype)))
            log.debug("%f +/- %f" % (np.mean(proj), np.std(proj)))
            if args.subtract:
                with mrc.ZSliceReader(p["ucsfImagePath"]) as zsr:
                    img = zsr.read(p["ucsfImageIndex"])
                log.debug("%f +/- %f" % (np.mean(img), np.std(img)))
                proj = img - proj
            zsw.write(proj)
            log.info(
                "%d@%s: %d/%d" %
                (p["ucsfImageIndex"], p["ucsfImagePath"], i + 1, df.shape[0]))

    if args.star is not None:
        if args.subtract:
            df[star.UCSF.IMAGE_ORIGINAL_PATH] = df[star.UCSF.IMAGE_PATH]
            df[star.UCSF.IMAGE_ORIGINAL_INDEX] = df[star.UCSF.IMAGE_INDEX]
        df[star.UCSF.IMAGE_PATH] = args.output
        df[star.UCSF.IMAGE_INDEX] = np.arange(df.shape[0])
        star.simplify_star_ucsf(df)
        star.write_star(args.star, df)
    return 0