Beispiel #1
0
    def __init__(self,
                 clustercenters,
                 metric='euclidean',
                 stride=1,
                 n_jobs=None,
                 skip=0):
        super(AssignCenters, self).__init__(metric=metric, n_jobs=n_jobs)

        if isinstance(clustercenters, str):
            from pyemma.coordinates.data import create_file_reader
            reader = create_file_reader(clustercenters, None, None)
            clustercenters = reader.get_output()[0]
        else:
            clustercenters = np.array(clustercenters,
                                      dtype=np.float32,
                                      order='C')

        # sanity check.
        if not clustercenters.ndim == 2:
            raise ValueError('cluster centers have to be 2d')

        self.set_params(clustercenters=clustercenters,
                        metric=metric,
                        stride=stride,
                        skip=skip)

        # since we provided centers, no estimation is required.
        self._estimated = True
Beispiel #2
0
    def __init__(self, clustercenters, metric='euclidean', stride=1, n_jobs=None, skip=0):
        r"""Assigns given (pre-calculated) cluster centers. If you already have
        cluster centers from somewhere, you use this class to assign your data to it.

        .. deprecated:: 2.5.11
            Use the deeptime
            `ClusterModel <https://deeptime-ml.github.io/latest/api/generated/deeptime.clustering.ClusterModel.html>`__
            and its `transform` method instead. Will be removed in PyEMMA 3.

        Parameters
        ----------
        clustercenters : path to file (csv) or npyfile or ndarray
            cluster centers to use in assignment of data
        metric : str
            metric to use during clustering ('euclidean', 'minRMSD')
        stride : int
            stride
        n_jobs : int or None, default None
            Number of threads to use during assignment of the data.
            If None, all available CPUs will be used.
        skip : int, default=0
            skip the first initial n frames per trajectory.
        Examples
        --------
        Assuming you have stored your centers in a CSV file:

        >>> from pyemma.coordinates.clustering import AssignCenters
        >>> from pyemma.coordinates import pipeline
        >>> reader = ... # doctest: +SKIP
        >>> assign = AssignCenters('my_centers.dat') # doctest: +SKIP
        >>> disc = pipeline(reader, cluster=assign) # doctest: +SKIP
        >>> disc.parametrize() # doctest: +SKIP
        """
        super(AssignCenters, self).__init__(metric=metric, n_jobs=n_jobs)

        if isinstance(clustercenters, str):
            from pyemma.coordinates.data import create_file_reader
            reader = create_file_reader(clustercenters, None, None)
            clustercenters = reader.get_output()[0]
        else:
            clustercenters = np.array(clustercenters, dtype=np.float32, order='C')

        # sanity check.
        if not clustercenters.ndim == 2:
            raise ValueError('cluster centers have to be 2d')

        self.set_params(clustercenters=clustercenters, metric=metric, stride=stride, skip=skip)

        # since we provided centers, no estimation is required.
        self._estimated = True
Beispiel #3
0
    def __init__(self, clustercenters, metric='euclidean'):
        super(AssignCenters, self).__init__(metric=metric)

        if isinstance(clustercenters, six.string_types):
            from pyemma.coordinates.data import create_file_reader
            reader = create_file_reader(clustercenters, None, None)
            self._clustercenters = reader.get_output()[0]
        else:
            self._clustercenters = np.array(clustercenters,
                                            dtype=np.float32,
                                            order='C')

        # sanity check.
        if not self.clustercenters.ndim == 2:
            raise ValueError('cluster centers have to be 2d')

        # since we provided centers, this transformer is already parametrized.
        self._parametrized = True