Beispiel #1
0
 def correlation_array(self):
     "The correlation function from the input power, on the grid"
     pa = empty((self.N, ) * self.dim)
     pa[...] = self.power_array()
     return self.V * np.real(
         dft.ifft(pa, L=self.boxlength, a=self.fourier_a,
                  b=self.fourier_b)[0])
Beispiel #2
0
 def gaussian_power_array(self):
     "The power spectrum required for a Gaussian field to produce the input power on a lognormal field"
     gca = empty((self.N, ) * self.dim)
     gca[...] = self.gaussian_correlation_array()
     gpa = np.abs(
         dft.fft(gca, L=self.boxlength, a=self.fourier_a,
                 b=self.fourier_b))[0]
     gpa[self.k() == 0] = 0
     return gpa
Beispiel #3
0
    def delta_x(self):
        "The real-space over-density field, from the input power spectrum"
        dk = empty((self.N, ) * self.dim, dtype='complex128')
        dk[...] = self.delta_k()
        dk[...] = np.sqrt(self.V) * dft.ifft(
            dk, L=self.boxlength, a=self.fourier_a, b=self.fourier_b)[0]
        dk = np.real(dk)

        sg = np.var(dk)
        return np.exp(dk - sg / 2) - 1
Beispiel #4
0
    def delta_x(self):
        "The realised field in real-space from the input power spectrum"
        # Here we multiply by V because the (inverse) fourier-transform of the (dimensionless) power has
        # units of 1/V and we require a unitless quantity for delta_x.
        dk = empty((self.N, ) * self.dim, dtype='complex128')
        dk[...] = self.delta_k()
        dk[...] = self.V * dft.ifft(
            dk, L=self.boxlength, a=self.fourier_a, b=self.fourier_b)[0]
        dk = np.real(dk)

        if self.ensure_physical:
            np.clip(dk, -1, np.inf, dk)

        return dk