def test_predict(): model = pf.GASRank(data=data, team_1="HomeTeam", team_2="AwayTeam", score_diff="PointsDiff", family=pf.Normal()) model.fit() prediction = model.predict("Denver Broncos", "Carolina Panthers", neutral=True) assert (len(prediction[np.isnan(prediction)]) == 0)
def test_mle(): """ Tests latent variable list length is correct, and that the estimated latent variables are not nan """ model = pf.GASRank(data=data, team_1="HomeTeam", team_2="AwayTeam", score_diff="PointsDiff", family=pf.Normal()) x = model.fit() assert (len(model.latent_variables.z_list) == 3) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0)
def test_t_mle_two_components(): """ Tests latent variable list length is correct, and that the estimated latent variables are not nan """ model = pf.GASRank(data=data.iloc[0:300, :], team_1="HomeTeam", team_2="AwayTeam", score_diff="PointsDiff", family=pf.t()) model.add_second_component("HQB", "AQB") x = model.fit('BBVI', iterations=50, map_start=False) assert (len(model.latent_variables.z_list) == 5) lvs = np.array([i.value for i in model.latent_variables.z_list]) assert (len(lvs[np.isnan(lvs)]) == 0) prediction = model.predict("Denver Broncos", "Carolina Panthers", "Peyton Manning", "Cam Newton", neutral=True) assert (len(prediction[np.isnan(prediction)]) == 0)