def _test_get_fitness(self, target, inputs, score): candidate = Candidate() candidate.data = inputs population = Population() population.append(candidate) fitness_evaluator = StringFitnessEvaluator(target) result = fitness_evaluator.get_fitness(candidate, population) self.assertIsInstance(result, Fitness) self.assertEqual(result, score)
def test_should_terminate_not_natural(self): candidate = Candidate() candidate.fitness = Fitness(-50, is_natural=False) population = Population() population.append(candidate) termination_condition = TargetFitness(-100) self.assertEqual(termination_condition.should_terminate(population), False) candidate.fitness = Fitness(-150, is_natural=False) self.assertEqual(termination_condition.should_terminate(population), True)
def test_should_terminate(self): candidate = Candidate() candidate.fitness = Fitness(50) population = Population() population.append(candidate) termination_condition = TargetFitness(100) self.assertEqual(termination_condition.should_terminate(population), False) candidate.fitness = Fitness(150) self.assertEqual(termination_condition.should_terminate(population), True)
def test_apply(self): candidate = Candidate() candidate.data = [1, 2, 3, 4] population = Population([candidate]) probability = Probability(1) random = Random() random.int = MagicMock(side_effect=[1, 3]) crossover_operator = ListOrderMutation(probability, random, 1) result = crossover_operator.apply(population) self.assertEqual(len(result), len(population)) self.assertEqual(result[0].data, [1, 4, 3, 2])
def test_apply_zero(self): inputs, outputs = ('aaaa', 'aaaa') candidate = Candidate() candidate.data = inputs population = Population() population.append(candidate) probability = Probability(0) random = Random() mutation_operator = BitStringMutation(probability, random) result = mutation_operator.apply(population) self.assertEqual(len(result), len(population)) self.assertEqual(result[0].data, outputs)
def test_apply_one(self): inputs, outputs = ('0110', '1010') candidate = Candidate() candidate.data = inputs population = Population() population.append(candidate) probability = Probability(1) random = Random() random.float = MagicMock(side_effect=[0.6, 0.1, 0.9, 0.4]) mutation_operator = BitStringMutation(probability, random) result = mutation_operator.apply(population) self.assertEqual(len(result), len(population)) self.assertEqual(result[0].data, outputs)
def test_apply_zero(self): alphabet = 'abcd' inputs, outputs = ('aaaa', 'aaaa') candidate = Candidate() candidate.data = inputs population = Population() population.append(candidate) probability = Probability(0) random = Random() crossover_operator = StringMutation(probability, random, alphabet) result = crossover_operator.apply(population) self.assertEqual(len(result), len(population)) self.assertEqual(result[0].data, outputs)
def test_apply_one(self): alphabet = 'abcd' inputs, outputs = ('aaaa', 'abcd') candidate = Candidate() candidate.data = inputs population = Population() population.append(candidate) probability = Probability(1) random = Random() random.choice = MagicMock(side_effect=['a', 'b', 'c', 'd']) crossover_operator = StringMutation(probability, random, alphabet) result = crossover_operator.apply(population) self.assertEqual(len(result), len(population)) self.assertEqual(result[0].data, outputs)
def test_trigger(self): candidate = Candidate() candidate.fitness = Fitness(1) population = Population([candidate]) observer = ConsoleObserver() observer.trigger(Event(Event.INITIALIZE, {'population': population})) observer.trigger( Event(Event.EVALUATED_POPULATION, { 'generation': 1, 'population': population })) observer.trigger( Event(Event.TERMINATE, { 'generation': 1, 'population': population }))
def test_get_fitness(self): candidate = Candidate() population = Population() population.append(candidate) callback = MagicMock(return_value=2) fitness_evaluator = CallbackFitnessEvaluator(callback) result = fitness_evaluator.get_fitness(candidate, population) self.assertEqual(callback.call_count, 1) self.assertEqual(result, 2)
def test_next_evolution_step(self): population = Population() for i in range(5): population.append(Candidate()) result = self.engine.next_evolution_step(population, 3) self.assertEqual(len(result), len(population)) self.assertEqual(self.engine.selection_strategy.validate.call_count, 1) self.assertEqual(self.engine.selection_strategy.select.call_count, 1) self.assertEqual(self.engine.evolutionary_operator.apply.call_count, 1)
def test_apply_empty(self): candidate = Candidate() population = Population() population.append(candidate) population.shuffle = MagicMock() sample_operator = SampleOperator() pipeline_operator = PipelineOperator() pipeline_operator.append_operator(sample_operator) result = pipeline_operator.apply(population) self.assertEqual(len(result), len(population))
def test_should_terminate(self): candidate = Candidate() candidate.fitness = Fitness(1) population = Population() population.append(candidate) termination_condition = Stagnation(3) self.assertEqual(termination_condition.should_terminate(population), False) self.assertEqual(termination_condition.should_terminate(population), False) self.assertEqual(termination_condition.should_terminate(population), True) candidate.fitness = Fitness(2) self.assertEqual(termination_condition.should_terminate(population), False) self.assertEqual(termination_condition.should_terminate(population), False) self.assertEqual(termination_condition.should_terminate(population), True)
def setUp(self): random = Random() factory = CandidateFactory(random) factory.create_candidate = MagicMock(side_effect=lambda: Candidate()) operator = Operator() fitness_evaluator = FitnessEvaluator() fitness_evaluator.get_fitness = MagicMock( side_effect=lambda c, p: Fitness(5)) selection_strategy = SelectionStrategy() self.engine = EvolutionEngine() self.engine.create(factory, operator, fitness_evaluator, selection_strategy)
def test_validate(self): crossover_operator = StringCrossover(Probability(1), Random(), 1) candidate1 = Candidate() candidate1.data = 'AAAA' candidate2 = Candidate() candidate2.data = 'BBBB' crossover_operator.validate_parents(candidate1, candidate2) candidate2.data = 'BBBBB' with self.assertRaises(ValidationException): crossover_operator.validate_parents(candidate1, candidate2)
def test_validate(self): crossover_operator = ListCrossover(Probability(1), Random(), 1) candidate1 = Candidate() candidate1.data = [1, 2, 3, 4] candidate2 = Candidate() candidate2.data = [5, 6, 7, 8] crossover_operator.validate_parents(candidate1, candidate2) candidate2.data = [1, 2, 3, 4, 5] with self.assertRaises(ValidationException): crossover_operator.validate_parents(candidate1, candidate2)
def test_logical_or(self): population = Population() population.append(Candidate()) tc1 = TerminationCondition() tc1.should_terminate = MagicMock(return_value=True) tc2 = TerminationCondition() tc2.should_terminate = MagicMock(return_value=False) termination_condition = Multicondition(logic=Multicondition.LOGIC_OR) termination_condition.add(tc1) termination_condition.add(tc2) self.assertTrue(termination_condition.should_terminate(population)) tc1.should_terminate = MagicMock(return_value=False) self.assertFalse(termination_condition.should_terminate(population))
def _test_apply(self, strings, random, points): candidate1 = Candidate() candidate1.data = strings[0][0] candidate2 = Candidate() candidate2.data = strings[0][1] crossover_points = points crossover_operator = ListCrossover(Probability(1), random, crossover_points) result = crossover_operator.mate(candidate1, candidate2) self.assertEqual(len(result), 2) self.assertEqual(result[0].data, strings[1][0]) self.assertEqual(result[1].data, strings[1][1])
def test_apply(self): candidate1 = Candidate() candidate1.data = [1, 2, 3, 4, 5, 6, 7, 8, 9] candidate2 = Candidate() candidate2.data = [9, 3, 7, 8, 2, 6, 5, 1, 4] random = Random() random.int = MagicMock(side_effect=[3, 7]) crossover_operator = ListOrderCrossover(Probability(1), random) result = crossover_operator.mate(candidate1, candidate2) self.assertEqual(len(result), 2) self.assertEqual(result[0].data, [1, 7, 3, 8, 2, 6, 5, 4, 9]) self.assertEqual(result[1].data, [9, 3, 2, 4, 5, 6, 7, 1, 8])
def create_candidate(self, fitness=None, is_natural=True): candidate = Candidate() candidate.fitness = Fitness(fitness, is_natural=is_natural) return candidate
def create_population(self, size): population = Population() for _ in range(size): population.append(Candidate()) return population
def test_init(self): candidate = Candidate() self.assertTrue(str(candidate))