def buildT2(): nyrs = 10 lat = pyg.regularlat(31) lon = pyg.regularlon(60) time = pyg.ModelTime365(values=np.arange(nyrs*365), \ units='days', startdate={'year':2011, 'month':1, 'day':1}) pres = pyg.Pres(np.arange(1000, 0, -50.)) z = 6.6 * pyg.log(1000. / pres) ts1 = 2 * pyg.sin(2 * np.pi * time / 365.) + 4 * pyg.Var( (time, ), values=np.random.randn(nyrs * 365)) ts1 = ts1.smooth('time', 20) ts2 = -5 + 0.6 * time / 365. + 5 * pyg.Var( (time, ), values=np.random.randn(nyrs * 365)) ts2 = ts2.smooth('time', 20) T_c = 260. + 40. * pyg.exp(-( (lat - 10 * np.sin(2 * np.pi * time / 365)) / 45.)**2) T_wave = 0.05 * lat * pyg.sind(6 * lon - time) # * ts1 T_lapse = -5 * z Tf = (T_lapse + T_c + T_wave).transpose('time', 'pres', 'lat', 'lon') Tf.name = 'Temp' U_c = 40 * pyg.sind(2 * lat)**2 * pyg.sin(2 * np.pi * z / 12)**2 U_wave = 0.08 * lat * pyg.sind(6 * lon - time) U = (U_c + ts2 * U_wave).transpose('time', 'pres', 'lat', 'lon') U.name = 'U' return pyg.Dataset( [Tf, U], atts={ 'history': 'Synthetic Temperature and Wind data generated by pygeode' })
def test_scalar_variable_read(): import pygeode as pyg # Create a scalar variable and test reading from it v = pyg.Var((), name='scalar', values=10.) assert v[()] == 10. # Write to netcdf pyg.save('test_issue_108.nc', v)
def test_issue053(): import pygeode as pyg import numpy as np l = pyg.regularlat(30) t = pyg.ModelTime365(values=np.arange(100), units='days', startdate=dict(year=1, month=1)) v = pyg.Var((t, l), name='Test', values=np.ones((100, 30))) v.plotatts['scalefactor'] = 2. v.plotatts['plottitle'] = 'V' a = l * v b = t + v assert a.plotatts == v.plotatts assert b.plotatts == v.plotatts
def eps_like(v): return pyg.Var(v.axes, values=np.random.randn(*v.shape))
def test_issue046(): import pygeode as pyg import numpy as np V = pyg.Var((pyg.Lat(32), ), name='Test', values=np.zeros(32) * np.nan) V.interpolate('lat', pyg.gausslat(32))[:]
assertSameVar(d.vardict[self.name], self.var) os.remove(fname) tc.__name__ = testname return tc ax1 = pyg.StandardTime(values=np.arange(365.), units='days', startdate={'year':2001}) ax2 = pyg.gausslat(32) ax3 = pyg.Pres(np.arange(0, 100, 10.)) shape = (365, 32, 10) data = np.random.randn(*shape) ltwts = ax2.auxarrays['weights'] var = pyg.Var((ax1, ax2, ax3), values=data, name='var') tv = varTest('1_Simple', var, \ name = 'var', axes = (ax1, ax2, ax3), \ values = data, serialize=True) sl1 = varTest('slice_simple', var(i_time=(0, 5), i_lat=(0, 5), i_pres=(0, 5)), \ shape = (5, 5, 5), \ axes = (ax1(i_time=(0, 5)), ax2(i_lat=(0, 5)), ax3(i_pres=(0, 5))), \ name = 'var', \ values = data[:5, :5, :5]) sl2 = varTest('slice_stride', var(i_time=(1, -1, 4)), \ values = data[1:-1:4, :, :]) sl3 = varTest('slice_negative_stride', var(i_time=(2, -5, -3)), \
import pygeode as pyg import numpy as np import pylab as pyl from pygeode.formats import netcdf as nc lat = pyg.gausslat(32) lon = pyg.Lon(np.arange(0, 360, 360 / 64.)) ln_grid, lt_grid = np.meshgrid(lon.values, lat.values) T_values = 260. + 40 * np.exp(-(lt_grid / 45.)**2) + 0.05 * lt_grid * np.sin( 3 * ln_grid * np.pi / 180.) T_c = 260. + 40 * np.exp(-(lt_grid / 45.)**2) T_wave = 0.05 * lt_grid * np.sin(3 * ln_grid * np.pi / 180.) T = pyg.Var((lat, lon), name='Temp', values=T_c + T_wave, atts={'units': 'K'}) d = pyg.Dataset( [T], atts={'history': 'Synthetic Temperature data generated by pygeode'}) nc.save('t_sample.nc', d)