Beispiel #1
0
    def ParseReactionFormula(name, formula):
        """ parse a two-sided formula such as: 2 C00001 = C00002 + C00003 
            return the set of substrates, products and the direction of the reaction
        """
        try:
            left, right = formula.split(' = ', 1)
        except ValueError:
            raise KeggParseException("There should be exactly one '=' sign")
        sparse_reaction = {}
        for cid, amount in NistRowData.ParseReactionFormulaSide(
                left).iteritems():
            sparse_reaction[cid] = -amount
        for cid, amount in NistRowData.ParseReactionFormulaSide(
                right).iteritems():
            if (cid in sparse_reaction):
                raise KeggParseException(
                    "C%05d appears on both sides of this formula" % cid)
            sparse_reaction[cid] = amount

        reaction = Reaction([name], sparse_reaction, None, '=>')

        kegg = Kegg.getInstance()
        rid = kegg.reaction2rid(reaction) or kegg.reaction2rid(
            reaction.reverse())
        reaction.rid = rid
        return reaction
Beispiel #2
0
 def row2string(S_row, cids):
     active_cids = list(np.nonzero(S_row)[0].flat)
     sparse = dict((cids[c], S_row[c]) 
                   for c in active_cids 
                   if abs(S_row[c]) > 1e-10)
     r = Reaction("", sparse)
     return r.FullReactionString(show_cids=False)
 def GetReactionString(self, r, show_cids=False):
     rid = self.rids[r]
     sparse = dict([(self.cids[c], self.S[c, r])
                    for c in self.S[:, r].nonzero()[0].flat])
     if self.fluxes[0, r] >= 0:
         direction = '=>'
     else:
         direction = '<='
     reaction = Reaction(self.kegg.rid2string(rid), sparse, rid=rid,
                         direction=direction)
     return reaction.to_hypertext(show_cids=show_cids)
Beispiel #4
0
 def GetReactionString(self, r, show_cids=False):
     rid = self.rids[r]
     sparse = dict([(self.cids[c], self.S[c, r])
                    for c in self.S[:, r].nonzero()[0].flat])
     if self.fluxes[0, r] >= 0:
         direction = '=>'
     else:
         direction = '<='
     reaction = Reaction(self.kegg.rid2string(rid), sparse, rid=rid,
                         direction=direction)
     return reaction.to_hypertext(show_cids=show_cids)
def stoichiometric_matrix2html(html_writer, A, cids, eps=1e-10):
    """
        Print a table in HTML format.
        A is a stoichiometric matrix where each row is a reaction and 
        each column is a compound, corresponding in position to the list "cids".
    """
    dict_list = []
    for i in xrange(A.shape[0]):
        sparse_reaction = dict([(cids[j], A[i, j]) for j in xrange(A.shape[1]) if abs(A[i, j]) > eps])
        r = Reaction("reaction%d" % i, sparse_reaction=sparse_reaction)
        dict_list.append({"reaction": r.to_hypertext()})
    html_writer.write_ul(
        ["%d rows" % A.shape[0], "%d columns" % A.shape[1], "%d rank" % LinearRegression.MatrixRank(A)]
    )
    html_writer.write_table(dict_list, headers=["#", "reaction"])
Beispiel #6
0
def runBeta2Alpha(thermo, reactionList):
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/Beta2Alpha.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=15,
                    maximal_dG=0.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    add_cofactor_reactions(pl)
    add_redox_reactions(pl)
    for r in reactionList:
        pl.add_reaction(Reaction.FromFormula(r, "Auto generate #%s" % hash(r)))
    r = Reaction.FromFormula("C00099 => C01401")
    pl.find_path("Beta2Alpha", r)
def GetC1Thermodynamics(
        html_writer,
        reaction_fname='../data/thermodynamics/c1_reaction_thermodynamics.csv'
):
    html_writer.write("<h1>C1 thermodynamics</h1>\n")

    dict_list = []
    db_public = SqliteDatabase('../data/public_data.sqlite')
    alberty = PsuedoisomerTableThermodynamics.FromDatabase(\
                        db_public, 'alberty_pseudoisomers', name='alberty')
    alberty.AddPseudoisomer(101, nH=23, z=0, nMg=0, dG0=0)
    reacthermo = ReactionThermodynamics(alberty, 'C1')
    reacthermo.pH = 7
    reacthermo.I = 0.1
    reacthermo.T = 298.15
    reacthermo.pMg = 14

    c1_reactions = []
    for row in csv.DictReader(open(reaction_fname, 'r')):
        r = Reaction.FromFormula(row['formula'])
        r.Balance(balance_water=False)
        r.SetNames(row['enzyme'])
        dG0_r_prime = float(row['dG0_r_prime'])
        pH, I, pMg, T = [float(row[k]) for k in ['pH', 'I', 'pMg', 'T']]
        reacthermo.AddReaction(r, dG0_r_prime, pH=pH, I=I, pMg=pMg, T=T)
        c1_reactions.append(r)

        row['formula'] = r.to_hypertext(show_cids=False)
        dict_list.append(row)

    html_writer.write_table(
        dict_list, headers=['acronym', 'enzyme', 'formula', 'dG0_r_prime'])

    reacthermo._Recalculate()
    return reacthermo
def GetFullOxidationReaction(cid):
    kegg = Kegg.getInstance()

    basic_cids = [1, 7, 9, 11, 14]  # H2O, O2, Pi, CO2, NH3
    basic_elements = ['C', 'O', 'P', 'N', 'e-']
    element_mat = np.matrix(np.zeros((len(basic_elements), len(basic_cids))))
    for j in xrange(len(basic_cids)):
        atom_bag = kegg.cid2atom_bag(basic_cids[j])
        atom_bag['e-'] = kegg.cid2num_electrons(basic_cids[j])
        for i in xrange(len(basic_elements)):
            element_mat[i, j] = atom_bag.get(basic_elements[i], 0)

    cs_element_vec = np.zeros((len(basic_elements), 1))
    atom_bag = kegg.cid2atom_bag(cid)
    atom_bag['e-'] = kegg.cid2num_electrons(cid)
    for i in xrange(len(basic_elements)):
        cs_element_vec[i, 0] = atom_bag.get(basic_elements[i], 0)

    x = np.linalg.inv(element_mat) * cs_element_vec

    sparse = dict([(basic_cids[i], np.round(x[i, 0], 3))
                   for i in xrange(len(basic_cids))])
    sparse[cid] = -1

    r = Reaction("complete oxidation of %s" % kegg.cid2name(cid), sparse)

    return r
def combine(fname, text_out):
    modules = {}
    for row in csv.DictReader(open(fname, 'r')):
        options = modules.setdefault(row['Module'], {})
        enzymes = options.setdefault(row['Option'], [])
        reaction = Reaction.FromFormula(row['Formula'])
        reaction.Balance(balance_water=False, exception_if_unknown=False)
        enzymes.append((row['Enzyme'], row['Formula'], float(row['Flux'])))

    l_mod = []
    for module, options in sorted(modules.iteritems()):
        l_opt = []
        for option, enzymes in sorted(options.iteritems()):
            l_opt.append(("%s%s" % (module, option), enzymes))
        l_mod.append(l_opt)

    for combination in itertools.product(*l_mod):
        entry = '_'.join([mod for mod, enzymes in combination])
        text_out.write('ENTRY       %s\n' % entry)
        text_out.write('THERMO      merged\n')
        firstrow = True
        for mod, enzymes in combination:
            for enzyme, formula, flux in enzymes:
                if firstrow:
                    text_out.write('REACTION    %-6s %s (x%g)\n' %
                                   (enzyme, formula, flux))
                    firstrow = False
                else:
                    text_out.write('            %-6s %s (x%g)\n' %
                                   (enzyme, formula, flux))
        text_out.write('///\n')
Beispiel #10
0
 def MakeReaction(self, rid, vec):
     sparse_reaction = {}
     for j, stoich in enumerate(vec):
         if stoich == 0:
             continue
         sparse_reaction[self.compound_ids[j]] = stoich
     return Reaction(rid, sparse_reaction)
Beispiel #11
0
    def GetForamtionEnergies(self, thermo):
        self.db.CreateTable(self.GIBBS_ENERGY_TABLE_NAME, "equation TEXT, dG0 REAL, dGc REAL", drop_if_exists=True)
        self.db.CreateIndex('gibbs_equation_idx', self.GIBBS_ENERGY_TABLE_NAME, 'equation', unique=True, drop_if_exists=True)

        all_equations = set()
        for row in self.db.Execute("SELECT distinct(equation) FROM %s" % 
                                   (self.EQUATION_TABLE_NAME)):
            all_equations.add(str(row[0]))
        
        from pygibbs.kegg import Kegg
        kegg = Kegg.getInstance()
        all_kegg_cids = set(kegg.get_all_cids())
        for equation in all_equations:
            try:
                rxn = Reaction.FromFormula(equation)
                if not rxn.get_cids().issubset(all_kegg_cids):
                    raise KeggNonCompoundException
                rxn.Balance(balance_water=True, exception_if_unknown=True)
                dG0 = thermo.GetTransfromedKeggReactionEnergies([rxn], conc=1)[0, 0]
                dGc = thermo.GetTransfromedKeggReactionEnergies([rxn], conc=1e-3)[0, 0]
                self.db.Insert(self.GIBBS_ENERGY_TABLE_NAME, [equation, dG0, dGc])
                
            except (KeggParseException, KeggNonCompoundException, KeggReactionNotBalancedException):
                self.db.Insert(self.GIBBS_ENERGY_TABLE_NAME, [equation, None, None])
    
        self.db.Commit()
Beispiel #12
0
def write_module_to_html(html_writer, S, rids, fluxes, cids):
    from pygibbs.kegg_reaction import Reaction

    reactions = []
    for r in xrange(S.shape[0]):
        sparse = dict([(cids[c], S[r, c]) for c in pylab.find(S[r, :])])
        reaction = Reaction('R%05d' % rids[r], sparse, rid=rids[r])
        reactions.append(reaction)
    write_kegg_pathway(html_writer, reactions, fluxes)
Beispiel #13
0
def stoichiometric_matrix2html(html_writer, A, cids, eps=1e-10):
    """
        Print a table in HTML format.
        A is a stoichiometric matrix where each row is a reaction and 
        each column is a compound, corresponding in position to the list "cids".
    """
    dict_list = []
    for i in xrange(A.shape[0]):
        sparse_reaction = dict([(cids[j], A[i, j]) for j in xrange(A.shape[1])
                                if abs(A[i, j]) > eps])
        r = Reaction("reaction%d" % i, sparse_reaction=sparse_reaction)
        dict_list.append({'reaction': r.to_hypertext()})
    html_writer.write_ul([
        '%d rows' % A.shape[0],
        '%d columns' % A.shape[1],
        '%d rank' % LinearRegression.MatrixRank(A)
    ])
    html_writer.write_table(dict_list, headers=['#', 'reaction'])
Beispiel #14
0
 def ParseReactionFormula(name, formula):
     """ parse a two-sided formula such as: 2 C00001 = C00002 + C00003 
         return the set of substrates, products and the direction of the reaction
     """
     try:
         left, right = formula.split(' = ', 1)
     except ValueError:
         raise KeggParseException("There should be exactly one '=' sign")
     sparse_reaction = {}
     for cid, amount in NistRowData.ParseReactionFormulaSide(left).iteritems():
         sparse_reaction[cid] = -amount
     for cid, amount in NistRowData.ParseReactionFormulaSide(right).iteritems():
         if (cid in sparse_reaction):
             raise KeggParseException("C%05d appears on both sides of this formula" % cid)
         sparse_reaction[cid] = amount
     
     reaction = Reaction([name], sparse_reaction, None, '=>')
     
     kegg = Kegg.getInstance()
     rid = kegg.reaction2rid(reaction) or kegg.reaction2rid(reaction.reverse())
     reaction.rid = rid
     return reaction
Beispiel #15
0
def example_formate(thermo, product_cid=22, co2_conc=1e-5):
    co2_hydration = Reaction.FromFormula("C00011 + C00001 => C00288")
    co2_hydration_dG0_prime = float(thermo.GetTransfromedKeggReactionEnergies([co2_hydration]))
    carbonate_conc = co2_conc * np.exp(-co2_hydration_dG0_prime / (R*default_T))
    thermo.bounds[11] = (co2_conc, co2_conc)
    thermo.bounds[288] = (carbonate_conc, carbonate_conc)
    
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/pathologic.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=20,
                    maximal_dG=0.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    add_cofactor_reactions(pl, free_ATP_hydrolysis=True)
    add_redox_reactions(pl, NAD_only=False)
   
    pl.delete_reaction(134) # formate:NADP+ oxidoreductase
    pl.delete_reaction(519) # Formate:NAD+ oxidoreductase
    pl.delete_reaction(24) # Rubisco
    pl.delete_reaction(581) # L-serine:NAD+ oxidoreductase (deaminating)
    pl.delete_reaction(220) # L-serine ammonia-lyase
    pl.delete_reaction(13) # glyoxylate carboxy-lyase (dimerizing; tartronate-semialdehyde-forming)
    pl.delete_reaction(585) # L-Serine:pyruvate aminotransferase
    pl.delete_reaction(1440) # D-Xylulose-5-phosphate:formaldehyde glycolaldehydetransferase
    pl.delete_reaction(5338) # 3-hexulose-6-phosphate synthase
    
    
    pl.add_reaction(Reaction.FromFormula("C06265 => C00011", name="CO2 uptake"))
    pl.add_reaction(Reaction.FromFormula("C06265 => C00288", name="carbonate uptake"))
    pl.add_reaction(Reaction.FromFormula("C06265 => C00058", name="formate uptake"))

    r = Reaction.FromFormula("5 C06265 + C00058 => C%05d" % product_cid) # at least one formate to product
    #r.Balance()
    
    kegg = Kegg.getInstance()
    pl.find_path("formate to %s" % kegg.cid2name(product_cid), r)
Beispiel #16
0
def example_oxidative(thermo):
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/pathologic.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=10,
                    maximal_dG=0,
                    thermodynamic_method=OptimizationMethods.MAX_TOTAL,
                    update_file=None)
    add_cofactor_reactions(pl)
    add_redox_reactions(pl, NAD_only=False)
    r = Reaction.FromFormula("C00022 => 3 C00011")
    #r.Balance()
    pl.find_path("oxidative", r)
Beispiel #17
0
def example_reductive(thermo):
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/pathologic.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=15,
                    maximal_dG=0.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    add_cofactor_reactions(pl)
    add_redox_reactions(pl)
    r = Reaction.FromFormula("3 C00011 => C00022")
    #r.Balance()
    pl.find_path("reductive", r)
Beispiel #18
0
def runPathologic(thermo, reactionList):
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/mog_finder.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=15,
                    maximal_dG=-3.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    add_cofactor_reactions(pl)
    add_redox_reactions(pl)
    for r in reactionList:
        pl.add_reaction(Reaction.FromFormula(r, "Auto generate #%s" % hash(r)))
    pl.delete_reaction(134)
    pl.delete_reaction(344)
    pl.delete_reaction(575)
    pl.delete_reaction(212)
    #pl.add_reaction(Reaction.FromFormula('C00149 + C00006 <=> C00036 + C00005 + C00080',
    #                                     'malate + NADP+ = oxaloacetate + NADPH',343))
    #pl.add_reaction(Reaction.FromFormula('C00222 + C00010 + C00006 <=> C00083 + C00005',
    #                                     'malonate-semialdehyde + CoA + NADP+ = malonyl-CoA + NADPH',740))
    r = Reaction.FromFormula("2 C00288 => C00048")
    pl.find_path("MOG_finder", r)
Beispiel #19
0
def example_lower_glycolysis(thermo):
    
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/pathologic.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=8,
                    maximal_dG=0.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    add_cofactor_reactions(pl)
    add_redox_reactions(pl)
    #r = Reaction.FromFormula("C00003 + C00118 + C00001 => C00022 + C00004 + C00009")
    r = Reaction.FromFormula("C00118 => C00022")
    #r.Balance()
    pl.find_path("GAP => PYR", r)
Beispiel #20
0
def example_three_acetate(thermo):
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/pathologic.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=20,
                    maximal_dG=0.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    add_cofactor_reactions(pl)
    #add_redox_reactions(pl)
    pl.delete_reaction(761) # F6P + Pi = E4P + acetyl-P
    pl.delete_reaction(1621) # X5P + Pi = GA3P + acetyl-P

    r = Reaction.FromFormula("C00031 => 3 C00033")
    #r.Balance()
    pl.find_path("three_acetate", r)
Beispiel #21
0
def example_glycolysis(thermo):
    
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/pathologic.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=15,
                    maximal_dG=0.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    add_cofactor_reactions(pl, free_ATP_hydrolysis=False)
    ban_toxic_compounds(pl)
    #add_carbon_counts(pl)
    #r = Reaction.FromFormula("C00031 => 6 C06265")
    r = Reaction.FromFormula("C00031 + 3 C00008 => 2 C00186 + 3 C00002")
    #r.Balance()
    pl.find_path("GLC => 2 LAC, 3 ATP, No methylglyoxal", r)
Beispiel #22
0
def example_rpi_bypass(thermo):
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/pathologic.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=10,
                    maximal_dG=0.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    add_cofactor_reactions(pl)
    #add_redox_reactions(pl)
    pl.delete_reaction(1056) # ribose-phosphate isomerase
    pl.delete_reaction(1081) # ribose isomerase

    r = Reaction.FromFormula("C00117 => C01182")
    #r.Balance()
    pl.find_path("rpi_bypass", r)
Beispiel #23
0
 def FromCsv(csv_fname, formation_thermo):
     data = []
     for row in csv.DictReader(open(csv_fname, 'r')):
         r = Reaction.FromFormula(row['formula'])
         r.Balance(balance_water=False)
         r.SetNames(row['enzyme'])
         dG0_r_prime = float(row['dG0_r_prime'])
         pH = float(row['pH'])
         I = float(row['I'])
         pMg = float(row.get('pMg', '10'))
         T = float(row['T'])
         data.append((r, dG0_r_prime, pH, I, pMg, T))
     
     reacthermo = ReactionThermodynamics(formation_thermo)
     reacthermo.SetConditions(pH=pH, I=I, pMg=pMg, T=T)
     for r, dG0, pH, I, pMg, T in data:
         reacthermo.AddReaction(r, dG0, pH=pH, I=I, pMg=pMg, T=T)
     reacthermo._Recalculate()
     return reacthermo
Beispiel #24
0
def example_glucose_to_ethanol_and_formate(thermo):
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/pathologic.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=15,
                    maximal_dG=0.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    #add_cofactor_reactions(pl)
    #add_XTP_reactions(pl, '=>')
    #add_redox_reactions(pl)
    #pl.delete_reaction(761) # F6P + Pi = E4P + acetyl-P
    #pl.delete_reaction(1621) # X5P + Pi = GA3P + acetyl-P

    r = Reaction.FromFormula("2 C00031 + 3 C00001 => 6 C00058 + 3 C00469")
    r.Balance()
    pl.find_path("glucose_to_ethanol_and_formate", r)
Beispiel #25
0
def example_more_than_two_pyruvate(thermo):
    pl = Pathologic(db=SqliteDatabase('../res/gibbs.sqlite', 'r'),
                    public_db=SqliteDatabase('../data/public_data.sqlite'),
                    html_writer=HtmlWriter('../res/pathologic.html'),
                    thermo=thermo,
                    max_solutions=None,
                    max_reactions=20,
                    maximal_dG=0.0,
                    thermodynamic_method=OptimizationMethods.GLOBAL,
                    update_file=None)
    #add_cofactor_reactions(pl)
    #add_XTP_reactions(pl, '=>')
    #add_redox_reactions(pl)
    #pl.delete_reaction(761) # F6P + Pi = E4P + acetyl-P
    #pl.delete_reaction(1621) # X5P + Pi = GA3P + acetyl-P

    r = Reaction.FromFormula("3 C00031 + 3 C00011 + C00003 => 7 C00022 + 3 C00001 + C00004")
    r.Balance()
    pl.find_path("more_than_two_pyr", r)
Beispiel #26
0
    def GetStoichiometries(self):
        self.db.CreateTable(self.STOICHIOMETRY_TABLE_NAME, "equation TEXT, compound TEXT, coefficient REAL", drop_if_exists=True)
        self.db.CreateIndex('stoichiometry_equation_idx', self.STOICHIOMETRY_TABLE_NAME, 'equation', unique=False, drop_if_exists=True)
        self.db.CreateIndex('stoichiometry_compound_idx', self.STOICHIOMETRY_TABLE_NAME, 'compound', unique=False, drop_if_exists=True)

        all_kegg_reactions = []
        all_equations = []
        for row in self.db.Execute("SELECT distinct(equation) FROM %s" % 
                                   (self.EQUATION_TABLE_NAME)):
            try:
                r = Reaction.FromFormula(str(row[0]))
                all_equations.append(str(row[0]))
                all_kegg_reactions.append(r)
            except (KeggParseException, KeggNonCompoundException):
                pass
        
        for i, equation in enumerate(all_equations):
            for compound, coefficient in all_kegg_reactions[i].iteritems():
                self.db.Insert(self.STOICHIOMETRY_TABLE_NAME,
                               [equation, "cpd:C%05d" % compound, coefficient])
    
        self.db.Commit()
Beispiel #27
0
    def AddRedoxCarriers(self, anchored=True):
        redox_carriers = RedoxCarriers()
        for name, rc in redox_carriers.iteritems():
            # make sure all redox carriers have a pKa table.
            # for some which don't (usually because their structure is not explicit)
            # we assume that the table is empty (i.e. no pKas exist).
            if self.dissociation.GetDissociationTable(rc.cid_ox) is None:
                self.dissociation.SetOnlyPseudoisomer(rc.cid_ox, rc.nH_ox,
                                                      rc.z_ox)
            if self.dissociation.GetDissociationTable(rc.cid_red) is None:
                self.dissociation.SetOnlyPseudoisomer(rc.cid_red, rc.nH_red,
                                                      rc.z_red)

            obs_id = name + " redox"
            self.cid2nH_nMg[rc.cid_ox] = (rc.nH_ox, 0)
            self.cid2nH_nMg[rc.cid_red] = (rc.nH_red, 0)
            sparse = {rc.cid_ox: -1, rc.cid_red: 1}

            dG0 = rc.ddG0_prime
            if not self.transformed:
                reaction = Reaction(obs_id, sparse)

                ddG0 = self.dissociation.ReverseTransformReaction(
                    reaction,
                    pH=rc.pH,
                    I=0,
                    pMg=default_pMg,
                    T=default_T,
                    cid2nH_nMg=self.cid2nH_nMg)
                dG0 -= ddG0

            self.AddObservation(obs_id=obs_id,
                                obs_type=KeggObservation.TYPE_REDOX,
                                url="",
                                anchored=anchored,
                                dG0=dG0,
                                sparse=sparse)
Beispiel #28
0
def add_carbon_counts(pl):
    """Add reactions counting carbons in various
       plausible fermentation products.
    """
    reactions = [
        #Reaction.FromFormula("C00246 => 4 C06265", name="Butyrate makeup"),
        #Reaction.FromFormula("C02632 => 4 C06265", name="Isobutyrate makeup"),
        Reaction.FromFormula("C00042 => 4 C06265", name="Succinate makeup"),
        #Reaction.FromFormula("C00022 => 3 C06265", name="Pyruvate makeup"),
        #Reaction.FromFormula("C00163 => 3 C06265", name="Propionate makeup"),
        #Reaction.FromFormula("C01013 => 3 C06265", name="3-hydroxypropionate makeup"),
        Reaction.FromFormula("C00186 => 3 C06265", name="Lactate makeup"),
        Reaction.FromFormula("C00033 => 2 C06265", name="Acetate makeup"),
        Reaction.FromFormula("C00469 => 2 C06265", name="Ethanol makeup"),
        Reaction.FromFormula("C00058 => 1 C06265", name="Formate makeup"),
        Reaction.FromFormula("C00011 => 1 C06265", name="CO2 makeup"),
        ]
    for rxn in reactions:
        pl.add_reaction(rxn)
    
    """
Beispiel #29
0
def pH_dependence():
    
    analyze_this_reaction = []
    I_mid = []
    I_tolerance = []
    T_mid = []
    T_tolerance = []
    
    analyze_this_reaction += [Reaction(['glucose kinase'], {2:-1, 31:-1, 8:1, 92:1})]
    I_mid += [0.01]
    I_tolerance += [0.02]
    T_mid += [303.1]
    T_tolerance += [0.1]
    
    analyze_this_reaction += [Reaction(['L-serine kinase'], {1:-1, 1005:-1, 9:1, 65:1})]
    I_mid += [0.25]
    I_tolerance += [0.01]
    T_mid += [311.15]
    T_tolerance += [0.1]
    
    analyze_this_reaction += [Reaction(['pyrophosphatase'], {1:-1, 13:-1, 9:2}, rid=4)]
    I_mid += [0.05]
    I_tolerance += [0.05]
    T_mid += [298.1]
    T_tolerance += [15]
    
    analyze_this_reaction += [Reaction(['Fructose bisphosphate aldolase'], {354:-1, 111:1, 118:1})]
    I_mid += [0.01]
    I_tolerance += [0.011]
    T_mid += [300]
    T_tolerance += [12]
    
    pylab.figure()
    pylab.rcParams['text.usetex'] = True
    pylab.rcParams['legend.fontsize'] = 4
    pylab.rcParams['font.family'] = 'sans-serif'
    pylab.rcParams['font.size'] = 6
    pylab.rcParams['lines.linewidth'] = 0.5
    pylab.rcParams['lines.markersize'] = 3       
    for i, reaction in enumerate(analyze_this_reaction):
        pylab.subplot(2,2,i+1)
        
        logging.info("Compound parameters from Alberty's table:")
        for cid in reaction.get_cids():
            A.cid2PseudoisomerMap(cid).Display()
        
        logging.info("Compound parameters from Hatzimanikatis' table:")
        for cid in reaction.get_cids():
            H.cid2PseudoisomerMap(cid).Display()
        
        M_obs = []
        sys.stdout.write("%5s | %5s | %5s | %6s | %6s | %s\n" % ("Match", "pH", "I", "T", "dG0(N)", "link"))
        for row in nist.data:
            if (reaction != None and reaction != row.reaction):
                continue
            try:
                #evaluation = row[3] # A, B, C, D
                if (reaction == row.reaction and 
                    abs(row.I-I_mid[i]) < I_tolerance[i] and 
                    abs(row.T-T_mid[i]) < T_tolerance[i]):
                    M_obs.append([row.pH, row.dG0_r])
                    sys.stdout.write(" ***  | ")
                else:
                    sys.stdout.write("      | ")
                sys.stdout.write("%5.2f | %5.2f | %6.1f | %6.2f | %s\n" % (row.pH, row.I, row.T, row.dG0_r, row.ref_id))
            except MissingCompoundFormationEnergy:
                continue
        if len(M_obs) == 0:
            sys.stderr.write("There are now data points matching this reaction with the specific I and T")
            continue
        M_obs = pylab.matrix(M_obs)
        
        leg = ['NIST']
        
        pH_range = pylab.arange(M_obs[:,0].min()-1, M_obs[:,0].max()+1, 0.01)
        M_est = []
        I_low  = max(I_mid[i]-I_tolerance[i], 0.0)
        I_high = I_mid[i]+I_tolerance[i]
        for pH in pH_range:
            predictions = []
            for predictor in [A, H]:
                predictions.append(reaction.PredictReactionEnergy(predictor, pH=pH, I=I_low ,T=T_mid[i]))
                predictions.append(reaction.PredictReactionEnergy(predictor, pH=pH, I=I_mid[i] ,T=T_mid[i]))
                predictions.append(reaction.PredictReactionEnergy(predictor, pH=pH, I=I_high ,T=T_mid[i]))
            M_est.append(predictions)
        M_est = pylab.matrix(M_est)
        
        pylab.plot(M_obs[:,0], M_obs[:,1], 'co')
        
        pylab.plot(pH_range, M_est[:,0], 'b:')
        pylab.plot(pH_range, M_est[:,1], 'b-')
        pylab.plot(pH_range, M_est[:,2], 'b:')
    
        pylab.plot(pH_range, M_est[:,3], 'g:')
        pylab.plot(pH_range, M_est[:,4], 'g-')
        pylab.plot(pH_range, M_est[:,5], 'g:')
    
        pylab.plot(pH_range, M_est[:,6], 'r:')
        pylab.plot(pH_range, M_est[:,7], 'r-')
        pylab.plot(pH_range, M_est[:,8], 'r:')
    
        for predictor_name in ['Alberty', 'Hatzi', 'Rugged']:
            for I in [I_low, I_mid[i], I_high]: 
                leg.append("%s (I = %.2f)" % (predictor_name, I))
        pylab.legend(leg, loc='best')
        
        if (i == 2 or i == 3):
            pylab.xlabel('pH')
        if (i == 0 or i == 2):
            pylab.ylabel(r"$\Delta_r G'^\circ$ [kJ/mol]")
        s_title = gc.kegg.reaction2string(reaction, cids=False) + "\n"
        s_title += "($I = %.2f \pm %.2f$ $M$, $T = %.1f \pm %.1f$ $K$)" % (I_mid[i], I_tolerance[i], T_mid[i]-273.15, T_tolerance[i])
        pylab.title(s_title, fontsize=5)
    pylab.savefig('../res/compare_pH.pdf', format='pdf')
Beispiel #30
0
plt.legend(['value in iAF1260', 'UGCM estimation'])
plt.savefig(FIG_FNAME + "_fig3.svg", fmt='.svg')

db = SqliteDatabase('../res/gibbs.sqlite', 'w')
ugc = UnifiedGroupContribution(db)
ugc.LoadGroups(True)
ugc.LoadObservations(True)
ugc.LoadGroupVectors(True)
ugc.LoadData(True)
ugc.init()
r_list = []
#r_list += [Reaction.FromFormula("C00036 + C00044 = C00011 + C00035 + C00074")]
#r_list += [Reaction.FromFormula("C00003 + C00037 + C00101 = C00004 + C00011 + C00014 + C00080 + C00143")] # glycine synthase
r_list += [
    Reaction.FromFormula(
        "C00001 + C00002 + C00064 + C04376 => C00008 + C00009 + C00025 + C04640"
    )
]
#r_list += [Reaction.FromFormula("C00001 + 2 C00002 + C00064 + C00288 <=> 2 C00008 + C00009 + C00025 + C00169")]

kegg = Kegg.getInstance()
S, cids = kegg.reaction_list_to_S(r_list)

logging.getLogger('').setLevel(logging.DEBUG)

dG0_prime = ugc.GetTransfromedReactionEnergies(S,
                                               cids,
                                               pH=pH,
                                               I=I,
                                               pMg=pMg,
                                               T=T)
Beispiel #31
0
            ['C%05d' % all_cids[c],
             '%8.1f' % dG0_f[c, 0], 'Calculated'])

#figure()
#plot(b, dot(S_red, dG0_f[unknown_columns]), '.')
figure()
plot(dG0_r[known_rows], dot(S[known_rows, :], dG0_f), '.')
show()

csv_out = csv.writer(open('../res/acetogens_reactions.csv', 'w'))
csv_out.writerow([
    "RID", "EC", "REACTION", "dG0 measured", "dG0 calculated", "pH", "I", "T"
])
for r in xrange(len(reactions)):
    (rid, ec, sparse, dG0, pH, I, T) = reactions[r]
    reaction = Reaction(ec, sparse, rid=rid)
    dG0_calculated = dot(S[r, :], dG0_f)
    if r in known_rows:
        csv_out.writerow([
            rid, ec,
            reaction.FullReactionString(),
            '%.1f' % dG0,
            '%.1f' % dG0_calculated, pH, I, T
        ])
    else:
        csv_out.writerow([
            rid, ec,
            reaction.FullReactionString(), 'N/A',
            '%.1f' % dG0_calculated, pH, I, T
        ])
Beispiel #32
0
 def GetTotalReactionString(self, show_cids=False):
     total_S = self.S * self.fluxes.T
     sparse = dict([(self.cids[c], total_S[c, 0])
                    for c in total_S.nonzero()[0].flat])
     reaction = Reaction("Total", sparse, direction="=>")
     return reaction.to_hypertext(show_cids=show_cids)
Beispiel #33
0
    def write_current_solution(self, exp_html, lp, experiment_name,
                               output_kegg_file=None):
        solution = lp.get_active_reaction_data()
        solution_id = '%03d' % lp.solution_index
        
        exp_html.write('%d reactions, flux = %g, \n' %
                       (len(solution.reactions),
                        float(solution.fluxes.sum(1))))

        # draw network as a graph and link to it
        Gdot = self.kegg_pathologic.draw_pathway(solution.reactions,
                                                 list(solution.fluxes.flat))
        svg_fname = '%s/%s_graph' % (experiment_name, solution_id)
        exp_html.embed_dot_inline(Gdot, width=240, height=320, name=svg_fname)

        # write the solution for the concentrations in a table
        if solution.concentrations is not None:
            exp_html.insert_toggle(start_here=True)
            
            rowdicts = []
            for c, compound in enumerate(solution.compounds):
                rowdict = {}
                rowdict['KEGG ID'] = '<a href="%s">C%05d</a>' % (compound.get_link(), compound.cid)
                rowdict['Compound'] = compound.name
                rowdict[symbol_df_G0_prime + "[kJ/mol]"] = solution.dG0_f[0, c]
                rowdict[symbol_df_G_prime + "[kJ/mol]"] = solution.dG_f[0, c]

                if np.isfinite(solution.concentrations[0, c]):
                    rowdict['Conc. [M]'] = '%.1e' % solution.concentrations[0, c]
                else:
                    rowdict['Conc. [M]'] = 'N/A'
                rowdicts.append(rowdict)
            
            headers=['KEGG ID', 'Compound', symbol_df_G0_prime + "[kJ/mol]",
                     symbol_df_G_prime + "[kJ/mol]", 'Conc. [M]']
            exp_html.write('Compound Concentrations<br>\n')
            exp_html.write_table(rowdicts, headers, decimal=1)

            total_reaction = Reaction('total', {})
            rowdicts = []
            for r, reaction in enumerate(solution.reactions):
                rowdict = {}
                flux = solution.fluxes[0, r]
                rowdict['KEGG ID'] = '<a href="%s">R%05d</a>' % (reaction.get_link(), reaction.rid)
                rowdict['Reaction'] = reaction.to_hypertext(show_cids=False)
                rowdict['Flux'] = flux
                rowdict[symbol_dr_Gc_prime + "[kJ/mol]"] = solution.dGc_r[0, r]
                rowdict[symbol_dr_G_prime + "[kJ/mol]"] = solution.dG_r[0, r]
                rowdicts.append(rowdict)
                total_reaction += (flux * reaction)
            
            rowdict = {}
            rowdict['KEGG ID'] = 'total'
            rowdict['Reaction'] = total_reaction.to_hypertext(show_cids=False)
            rowdict[symbol_dr_Gc_prime + "[kJ/mol]"] = float(solution.dGc_r.sum(1))
            rowdict[symbol_dr_G_prime + "[kJ/mol]"] = float(solution.dG_r.sum(1))
            rowdicts.append(rowdict)
            
            headers=['KEGG ID', 'Reaction', symbol_dr_Gc_prime + "[kJ/mol]",
                     symbol_dr_G_prime + "[kJ/mol]", "Flux"]
            exp_html.write('Reaction Gibbs energies<br>\n')
            exp_html.write_table(rowdicts, headers, decimal=1)

            exp_html.div_end()

        # write the pathway in KEGG format
        if output_kegg_file is not None:
            write_kegg_pathway(output_kegg_file,
                               entry=experiment_name + ' ' + solution_id,
                               reactions=solution.reactions,
                               fluxes=list(solution.fluxes.flat))
            
        exp_html.write('<br>\n')
        ugc.init()

    if args.test:
        r_list = []
        #        r_list += [Reaction.FromFormula("C00002 + C00001 = C00008 + C00009")]
        #        r_list += [Reaction.FromFormula("C00036 + C00024 = C00022 + C00083")]
        #        r_list += [Reaction.FromFormula("C00036 + C00100 = C00022 + C00683")]
        #        r_list += [Reaction.FromFormula("C01013 + C00010 + C00002 = C05668 + C00020 + C00013")]
        #        r_list += [Reaction.FromFormula("C00091 + C00005 = C00232 + C00010 + C00006")]
        #        r_list += [Reaction.FromFormula("C00002 + C00493 = C00008 + C03175")]
        #        r_list += [Reaction.FromFormula("C00243 + C00125 = C05403 + C00126")]
        #        r_list += [Reaction.FromFormula("2 C00206 = C00360 + C00131")]
        #        r_list += [Reaction.FromFormula("C04171 + C00003 = C00196 + C00080 + C00004")]
        #        r_list += [Reaction.FromFormula("C00036 + C00044 = C00011 + C00035 + C00074")]
        r_list += [
            Reaction.FromFormula(
                "C00001 + C00022 + C17569 = C00011 + C00033 + C00390")
        ]

        kegg = Kegg.getInstance()
        S, cids = kegg.reaction_list_to_S(r_list)

        dG0_prime = ugc.GetTransfromedReactionEnergies(S, cids, pH=7.0, I=0.15)

        ln_conc = np.matrix(np.ones((1, S.shape[0]))) * np.log(0.001)
        if 1 in cids:
            ln_conc[0,
                    cids.index(1)] = 0  # H2O should have a concentration of 1
        RT = R * default_T
        dGc_prime = dG0_prime + RT * ln_conc * S
        for i in xrange(len(r_list)):
            r_list[i].Balance()
Beispiel #35
0
    def FromFiles():
        feist = Feist()
        reaction_file = '../data/metabolic_models/iAF1260_reactions.csv'

        # Read compounds ids 2 Kegg cid's mapping file into a dict

        counters = {
            'kegg_error': 0,
            'translocation': 0,
            'exchange': 0,
            'sink': 0,
            'unbalanced': 0,
            'okay': 0
        }
        for row in csv.DictReader(open(reaction_file, 'r')):
            #if 'Transport' in row['subSystem']:
            #    counters['translocation'] += 1
            #    continue
            if row['abbreviation'][0:3] == 'EX_':
                counters['exchange'] += 1
                continue
            if row['abbreviation'][0:3] == 'DM_':
                counters['sink'] += 1
                continue

            sparse = Feist.parse_equation(row['equation'])
            kegg_sparse = {}
            for biggID, coeff in sparse.iteritems():
                keggID = feist.bigg2kegg[biggID]
                kegg_sparse[keggID] = kegg_sparse.get(keggID, 0) + coeff

            if 0 in kegg_sparse:
                logging.debug('Some compounds are missing KEGG IDs in %s: %s' %
                              (row['abbreviation'], row['equation']))
                counters['kegg_error'] += 1
                continue

            for keggID in [k for k, v in kegg_sparse.iteritems() if v == 0]:
                del kegg_sparse[keggID]

            directionality = row["directionality without uncertainty (pH 7.2)"]
            #directionaliry = row['reconstruction directionality']
            if directionality == 'reversible':
                direction = '<=>'
            elif directionality == 'forward only':
                direction = '=>'
            elif directionality == 'reverse only':
                direction = '<='
            else:
                raise ValueError('unknown directionality tag: ' +
                                 directionality)

            reaction = Reaction(row['abbreviation'],
                                kegg_sparse,
                                direction=direction)
            if row['delta G (pH 7)'] == 'Not calculated':
                dG0 = np.nan
            else:
                dG0 = float(row['delta G (pH 7)']) * J_per_cal

            try:
                reaction.Balance(balance_water=True,
                                 exception_if_unknown=False)
                counters['okay'] += 1
            except KeggReactionNotBalancedException as e:
                logging.debug(str(e) + ' - ' + str(reaction))
                counters['unbalanced'] += 1
                continue

            feist.reactions.append(reaction)
            feist.dG0s.append(dG0)

        logging.debug(" ; ".join(
            ["%s : %d" % (key, val) for (key, val) in counters.iteritems()]))
        return feist
Beispiel #36
0
    H_nopka = Hatzi(use_pKa=False)
    H_withpka = Hatzi(use_pKa=True)
    H_withpka.ToDatabase(db, 'hatzi_thermodynamics')
    
    #H.ToDatabase(db, 'hatzi_gc')
    #H.I = 0.25
    #H.T = 300;
    #sparse_reaction = {13:-1, 1:-1, 9:2}
    #sparse_reaction = {36:-1, 3981:1}
    #sparse_reaction = {6:-1, 143:-1, 234:1, 5:1}
    #sparse_reaction = {1:-1, 499:-1, 603:1, 86:1}
    #sparse_reaction = {1:-1, 6:-1, 311:-1, 288:1, 5:1, 80:2, 26:1}
    #sparse_reaction = {408:-1, 6:-1, 4092:1, 5:1}
    #sparse_reaction = {588:-1, 1:-1, 114:1, 9:1}
    #sparse_reaction = {1:-1, 3:-1, 149:-1, 288:1, 4:1, 80:2, 22:1}
    react = Reaction("reaction", {408:-1, 6:-1, 4092:1, 5:1})
    
    #sys.stdout.write("The dG0_r of PPi + H20 <=> 2 Pi: \n\n")
    
    react.Balance()
    print react.FullReactionString()
    
    sys.stdout.write("%5s | %5s | %6s | %6s\n" % ("pH", "I", "T", "dG0_r"))
    for pH in np.arange(5, 10.01, 0.25):
        H_withpka.pH = pH
        sys.stdout.write("%5.2f | %5.2f | %6.1f | %6.2f\n" % 
                         (H_withpka.pH, H_withpka.I, H_withpka.T, 
                          react.PredictReactionEnergy(H_withpka)))

    for cid in react.get_cids():
        print '-'*50