def test_SNR(network, station, phase, preproloc='ouput/waveforms/preprocessed'): """Test the automatic QC scripts for a certain station and writes ratings in the rating file.""" noisematls = [] critls = [] loc = os.path.join(preproloc, phase, '/by_station/', network, station) for file in os.listdir(loc): try: st = read(loc + '/' + file) except IsADirectoryError: continue dt = st[0].stats.delta sampling_rate = st[0].stats.sampling_rate if phase == "S": _, crit, _, noisemat = qcs(st, dt, sampling_rate) elif phase == "P": _, crit, _, noisemat = qcp(st, dt, sampling_rate) noisematls.append(noisemat) critls.append(crit) return noisematls, critls
def automatic_rate(network, station, phase, preproloc): """ Checks the automatic QC criteria for SRF waveforms. Parameters ---------- network : STRING Network code (2 letters). station : STRING Station code (3 letters). phase : STRING, optional "P" or "S". preproloc : string Directory that contains the preprocessed files (not quality controlled) Returns ------- diff : INTEGER Number of waveforms that were not rated 3 or 4. ret : INTEGER Number of automatically retained waveforms. sts : LIST List containing all retained + filtered streams. crits : LIST List containing bools (retained or not) corresponding to streams in sts. """ inloc = os.path.join(preproloc, phase, '/by_station/', network, station) diff = 0 ret = 0 sts = [] crits = [] for file in os.listdir(inloc): if file[:4] == "info": # Skip the info files continue try: st = read(inloc + file) except IsADirectoryError as e: print(e) continue starttime = str(st[0].stats.starttime) if phase == "S": st, crit, hf, noisemat = qcs(st, st[0].stats.delta, st[0].stats.sampling_rate) elif phase == "P": st, crit, lf, noisemat = qcp(st, st[0].stats.delta, st[0].stats.sampling_rate) with shelve.open( os.path.join(finddir(), 'ratings') + network + "." + station + "rating") as f: f[starttime + "_auto"] = crit if starttime in f and int(f[starttime]) < 3 and crit: diff = diff + 1 if crit: ret = ret + 1 sts.append(st) crits.append(crit) return diff, ret, sts, crits
def rate(network, phase, preproloc, station=None, review=False, retained=False, decon_meth='it', test_tt_calculation=False): """ Module to rate and review the quality of Sp or Ps waveforms from the given station. Shows the automatic rating from qc. Tapers can be controlled with the mouse. Rating is done with the keyboard. Makes only sense if the files in preproloc have not been quality controlled (the script is a reminant from an earlier alpha version). Parameters ---------- network : STRING Network code (two letters). phase : STRING Either "P" for Ps or "S" Sp. The default is "S". preproloc : string Directory that contains the preprocessed files (not quality controlled) station : str or list, optional Station code (three letters). review : INTEGER, optional If true, already rated waveforms are shown. Can also be an integer between 1 and 4. Then, only waveforms rated with the respected rating are shown. The default is False. retained : Bool, optional Show only waveforms retained by qcp or qcs. The default is False. decon_meth : STRING, optional Deconvolution method, "waterlevel", 'dampedf' for constant damping level, 'it' for iterative time domain deconvoltuion, 'multit' for multitaper or 'fqd' for frequency dependently damped spectral division. The default is 'it' Raises ------ Exception For Typing mistakes. Returns ------- None. """ if phase == 'P': onset = 30 elif phase[-1] == 'S': onset = 120 inloc = os.path.join(preproloc, phase, 'by_station', network) infiles = [] # List of all files in folder pattern = [] # List of input constraints streams = [] # List of files filtered for input criteria for root, dirs, files in os.walk(inloc): for name in files: infiles.append(os.path.join(root, name)) # Set filter patterns if station: if type(station) == str: pattern.append('*%s*%s*.mseed' % (network, station)) elif type(station) == list: for stat in station: pattern.append('*%s*%s*.mseed' % (network, stat)) else: pattern.append('*%s*.mseed' % (network)) # Do filtering for pat in pattern: streams.extend(fnmatch.filter(infiles, pat)) # clear memory del pattern, infiles # For TauPy lookup model = TauPyModel() if test_tt_calculation: client = Client() for f in streams: # if file[:4] == "info": # Skip the info files # continue # try: # st = read(inloc + file) # except IsADirectoryError as e: # print(e) # continue st = read(f) # List for taper coordinates if "taper" in rating: del rating["taper"] rating["taper"] = [] st.normalize() # Additional filter "test" if phase == "S": st.filter("lowpass", freq=1.0, zerophase=True, corners=2) elif phase == "P": st.filter("lowpass", freq=1.0, zerophase=True, corners=2) y = [] ch = [] starttime = str(st[0].stats.starttime) dt = st[0].stats.delta sampling_f = st[0].stats.sampling_rate old = __r_file(network, st[0].stats.station, starttime) # old # read info file # location info file infof = os.path.join(inloc, st[0].stats.station, 'info') with shelve.open(infof) as info: ii = info["starttime"].index(st[0].stats.starttime) rdelta = info["rdelta"][ii] # epicentral distance mag = info["magnitude"][ii] statlat = info["statlat"] statlon = info["statlon"] rayp = info["rayp_s_deg"][ii] / 111319.9 evt_depth = info["evt_depth"][ii] / 1000 ot = info["ot_ret"][ii] evtlat = info['evtlat'][ii] evtlon = info['evtlon'][ii] if old and not review: # skip already rated files continue if type(review) == int: if review > 4: raise Exception("review has to be between 0 and 4") if review != int(old): continue # check automatic rating if phase == "S": st_f, crit, hf, noisemat = qcs(st, dt, sampling_f, onset=onset) elif phase == "P": st_f, crit, hf, noisemat = qcp(st, dt, sampling_f, onset=onset) # skip files that have not been retained if retained and not crit: continue # create RF if not test_tt_calculation: _, _, PSV = rotate_PSV(statlat, statlon, rayp, st_f) else: PSV = st_f # to see correlation at theoretical arrival try: RF = createRF(PSV, phase, method=decon_meth, shift=onset) except ValueError as e: # There were some problematic events print(e) continue # TauPy lookup ph_name = [] ph_time = [] if not test_tt_calculation: arrivals = model.get_travel_times(evt_depth, distance_in_degree=rdelta) primary_time = model.get_travel_times(evt_depth, distance_in_degree=rdelta, phase_list=phase)[0].time for arr in arrivals: if arr.time < primary_time - onset or arr.time > \ primary_time + 120 or arr.name == phase: continue ph_name.append(arr.name) ph_time.append(arr.time - primary_time) else: # Caluclate travel times with different methods ph_time.append( model.get_travel_times_geo(evt_depth, evtlat, evtlon, statlat, statlon, phase_list=phase)[0].time) d = [] d.append( client.distaz(statlat, statlon, evtlat, evtlon)['distance']) d.append( kilometer2degrees( gps2dist_azimuth(statlat, statlon, evtlat, evtlon)[0] / 1000)) for dis in d: ph_time.append( model.get_travel_times(evt_depth, dis, phase_list=phase)[0].time) ph_name = ['taup', 'iris', 'geodetics'] ph_time = np.array(ph_time) - (st[0].stats.starttime + onset - UTCDateTime(ot)) # waveform data st.sort() for tr in st: y.append(tr.data) ch.append(tr.stats.channel[2]) # create time vector t = np.linspace(0 - onset, tr.stats.npts * tr.stats.delta - onset, len(y[0])) # plot fig, ax = __draw_plot(starttime, t, y, ph_time, ph_name, ch, noisemat, RF, old, rdelta, mag, crit, ot, evt_depth, phase, test_tt_calculation) while not plt.waitforbuttonpress(30): # Taper when input is there if len(rating["taper"]) == 2: if rating["taper"][0] < rating["taper"][1]: trim = [rating["taper"][0], rating["taper"][1]] else: trim = [rating["taper"][1], rating["taper"][0]] trim[0] = trim[0] - t[0] trim[1] = t[-1] - trim[1] RF = createRF(PSV, phase, method=decon_meth, shift=onset, trim=trim) __draw_plot(starttime, t, y, ph_time, ph_name, ch, noisemat, RF, old, rdelta, mag, crit, ot, evt_depth, phase, test_tt_calculation) rating["taper"].clear() # fig.canvas.mpl_connect('key_press_event', ontype) if rating["k"] == "q": break elif "k" in rating: __w_file(network, st[0].stats.station, starttime)