Beispiel #1
0
 def non_dominated(self):
     """Fix this. check if nd2 and nds mean the same thing"""
     obj = self.objectives
     num_obj = obj.shape[1]
     if num_obj == 2:
         non_dom_front = nd2(obj)
     else:
         non_dom_front = nds(obj)
     if isinstance(non_dom_front, tuple):
         self.non_dom = self.objectives[non_dom_front[0][0]]
     elif isinstance(non_dom_front, np.ndarray):
         self.non_dom = self.objectives[non_dom_front]
     else:
         print("Non Dom error Line 285 in population.py")
     return non_dom_front
Beispiel #2
0
from pyDOE import lhs

from desdeo_emo.EAs.RVEA import RVEA, oRVEA, robust_RVEA

from pygmo import non_dominated_front_2d as nd2

problem_names = ["ZDT1", "ZDT2", "ZDT3", "ZDT4", "ZDT6"]
num_var = {"ZDT1": 30, "ZDT2": 30, "ZDT3": 30, "ZDT4": 10, "ZDT6": 10}

for problem_name in problem_names:
    prob = test_problem_builder(problem_name)

    x = lhs(num_var[problem_name], 250)
    y = prob.evaluate(x)

    data_pareto = nd2(y.objectives)
    data_pareto = y.objectives[data_pareto]

    x_names = [f"x{i}" for i in range(1, num_var[problem_name] + 1)]
    y_names = ["f1", "f2"]

    data = pd.DataFrame(np.hstack((x, y.objectives)),
                        columns=x_names + y_names)

    problem = DataProblem(data=data,
                          variable_names=x_names,
                          objective_names=y_names)

    problem.train(LipschitzianRegressor)
    evolver_L_opt = oRVEA(problem, use_surrogates=True)
    while evolver_L_opt.continue_evolution():