Beispiel #1
0
def diags(vecs, offs):
    ret = None
    for v, k in zip(vecs, offs):
        vecs = backend.to_primitive(v)
        dk = backend.diag(vecs, k)
        ret = dk if ret is None else ret + dk
    return ret
Beispiel #2
0
def krylov_base(M, personalization, krylov_space_degree):
    warnings.warn(
        "Krylov approximation is not stable yet (results may differ in future versions)"
    )
    # TODO: throw exception for non-symmetric matrix
    personalization = backend.to_primitive(personalization)
    base = [
        personalization / backend.dot(personalization, personalization)**0.5
    ]
    base_norms = []
    alphas = []
    for j in range(0, krylov_space_degree):
        v = base[j]
        w = backend.conv(v, M)
        a = backend.dot(v, w)
        alphas.append(a)
        next_w = w - a * v
        if j > 0:
            next_w -= base[j - 1] * base_norms[j - 1]
        next_w_norm = (backend.sum(next_w**2))**0.5
        base_norms.append(next_w_norm)
        if j != krylov_space_degree - 1:
            base.append(next_w / next_w_norm)
    H = diags([alphas, base_norms[1:], base_norms[1:]], [0, -1, 1])
    V = backend.combine_cols(base)  #V = np.column_stack(base)
    return V, H
Beispiel #3
0
 def _run(self,
          personalization: GraphSignal,
          params: object,
          base=None,
          *args,
          **kwargs):
     params = backend.to_primitive(params)
     div = backend.sum(backend.abs(params))
     if div != 0:
         params = params / div
     if self.basis != "krylov":
         if base is None:
             M = self.ranker_generator(params).preprocessor(
                 personalization.graph)
             base = arnoldi_iteration(M, personalization.np, len(params))[0]
         ret = 0
         for i in range(backend.length(params)):
             ret = ret + params[i] * base[:, i]
         return to_signal(personalization, ret)
     return self.ranker_generator(params).rank(personalization, *args,
                                               **kwargs)
Beispiel #4
0
    def _tune(self, graph=None, personalization=None, *args, **kwargs):
        #graph_dropout = kwargs.get("graph_dropout", 0)
        #kwargs["graph_dropout"] = 0
        previous_backend = backend.backend_name()
        personalization = to_signal(graph, personalization)
        graph = personalization.graph
        if self.tuning_backend is not None and self.tuning_backend != previous_backend:
            backend.load_backend(self.tuning_backend)
        backend_personalization = to_signal(
            personalization, backend.to_array(personalization.np))
        #training, validation = split(backend_personalization, 0.8)
        #training2, validation2 = split(backend_personalization, 0.6)
        #measure_weights = [1, 1, 1, 1, 1]
        #propagated = [training.np, validation.np, backend_personalization.np, training2.np, validation2.np]

        measure_values = [None] * (self.num_parameters + self.autoregression)
        M = self.ranker_generator(measure_values).preprocessor(graph)

        #for _ in range(10):
        #    backend_personalization.np = backend.conv(backend_personalization.np, M)
        training, validation = split(backend_personalization, 0.8)
        training1, training2 = split(training, 0.5)

        propagated = [training1.np, training2.np]
        measures = [
            self.measure(backend_personalization, training1),
            self.measure(backend_personalization, training2)
        ]
        #measures = [self.measure(validation, training), self.measure(training, validation)]

        if self.basis == "krylov":
            for i in range(len(measure_values)):
                measure_values[i] = [
                    measure(p) for p, measure in zip(propagated, measures)
                ]
                propagated = [backend.conv(p, M) for p in propagated]
        else:
            basis = [
                arnoldi_iteration(M, p, len(measure_values))[0]
                for p in propagated
            ]
            for i in range(len(measure_values)):
                measure_values[i] = [
                    float(measure(base[:, i]))
                    for base, measure in zip(basis, measures)
                ]
        measure_values = backend.to_primitive(measure_values)
        mean_value = backend.mean(measure_values, axis=0)
        measure_values = measure_values - mean_value
        best_parameters = measure_values
        measure_weights = [1] * measure_values.shape[1]
        if self.autoregression != 0:
            #vals2 = -measure_values-mean_value
            #measure_values = np.concatenate([measure_values, vals2-np.mean(vals2, axis=0)], axis=1)
            window = backend.repeat(1. / self.autoregression,
                                    self.autoregression)
            beta1 = 0.9
            beta2 = 0.999
            beta1t = 1
            beta2t = 1
            rms = window * 0
            momentum = window * 0
            error = float('inf')
            while True:
                beta1t *= beta1
                beta2t *= beta2
                prev_error = error
                parameters = backend.copy(measure_values)
                for i in range(len(measure_values) - len(window) - 2, -1, -1):
                    parameters[i, :] = backend.dot(
                        (window),
                        measure_values[(i + 1):(i + len(window) + 1), :])
                errors = (parameters - measure_values
                          ) * measure_weights / backend.sum(measure_weights)
                for j in range(len(window)):
                    gradient = 0
                    for i in range(len(measure_values) - len(window) - 1):
                        gradient += backend.dot(measure_values[i + j + 1, :],
                                                errors[i, :])
                    momentum[j] = beta1 * momentum[j] + (
                        1 - beta1) * gradient  #*np.sign(window[j])
                    rms[j] = beta2 * rms[j] + (1 - beta2) * gradient * gradient
                    window[j] -= 0.01 * momentum[j] / (1 - beta1t) / (
                        (rms[j] / (1 - beta2t))**0.5 + 1.E-8)
                    #window[j] -= 0.01*gradient*np.sign(window[j])
                error = backend.mean(backend.abs(errors))
                if error == 0 or abs(error - prev_error) / error < 1.E-6:
                    best_parameters = parameters
                    break
        best_parameters = backend.mean(best_parameters[:self.num_parameters, :]
                                       * backend.to_primitive(measure_weights),
                                       axis=1) + backend.mean(mean_value)

        if self.tunable_offset is not None:
            div = backend.max(best_parameters)
            if div != 0:
                best_parameters /= div
            measure = self.tunable_offset(validation, training)
            base = basis[0] if self.basis != "krylov" else None
            best_offset = optimize(
                lambda params: -measure.best_direction() * measure(
                    self._run(training, [(best_parameters[i] + params[
                        2]) * params[0]**i + params[1] for i in range(
                            len(best_parameters))], base, *args, **kwargs)),
                #lambda params: - measure.evaluate(self._run(training, best_parameters + params[0], *args, **kwargs)),
                max_vals=[1, 0, 0],
                min_vals=[0, 0, 0],
                deviation_tol=0.005,
                parameter_tol=1,
                partitions=5,
                divide_range=2)
            #best_parameters += best_offset[0]
            best_parameters = [
                (best_parameters[i] + best_offset[2]) * best_offset[0]**i +
                best_offset[1] for i in range(len(best_parameters))
            ]

        best_parameters = backend.to_primitive(best_parameters)
        if backend.sum(backend.abs(best_parameters)) != 0:
            best_parameters /= backend.mean(backend.abs(best_parameters))
        if self.tuning_backend is not None and self.tuning_backend != previous_backend:
            best_parameters = [
                float(param) for param in best_parameters
            ]  # convert parameters to backend-independent list
            backend.load_backend(previous_backend)
        #kwargs["graph_dropout"] = graph_dropout
        if self.basis != "krylov":
            return Tautology(), self._run(
                personalization, best_parameters, *args,
                **kwargs)  # TODO: make this unecessary
        return self.ranker_generator(best_parameters), personalization