Beispiel #1
0
    def test_memory(self):
        ds = pygsti.objects.DataSet(fileToLoadFrom=compare_files + "/analysis.dataset")
        gateset = pygsti.io.load_gateset(compare_files + "/analysis.gateset")
        with self.assertRaises(MemoryError):
            pygsti.logl_hessian(gateset, ds,
                                probClipInterval=(-1e6,1e6),
                                poissonPicture=True, check=False, memLimit=0) # No memory for you

        L = pygsti.logl_hessian(gateset, ds, probClipInterval=(-1e6,1e6),
                                poissonPicture=True, check=False, memLimit=None, verbosity=10) # Reference: no mem limit
        L1 = pygsti.logl_hessian(gateset, ds, probClipInterval=(-1e6,1e6),
                                 poissonPicture=True, check=False, memLimit=370000000, verbosity=10) # Limit memory a bit
        L2 = pygsti.logl_hessian(gateset, ds,probClipInterval=(-1e6,1e6),
                                 poissonPicture=True, check=False, memLimit=1000000, verbosity=10) # Limit memory a bit more
        L3 = pygsti.logl_hessian(gateset, ds, probClipInterval=(-1e6,1e6),
                                 poissonPicture=True, check=False, memLimit=300000, verbosity=10) # Very low memory (splits tree)
        
        with self.assertRaises(MemoryError):
            pygsti.logl_hessian(gateset, ds,
                                probClipInterval=(-1e6,1e6),
                                poissonPicture=True, check=False, memLimit=100000) # Splitting unproductive


        #print("****DEBUG LOGL HESSIAN L****")
        #print("shape = ",L.shape)
        #to_check = L
        #for i in range(L.shape[0]):
        #    for j in range(L.shape[1]):
        #        diff = abs(L3[i,j]-L[i,j])
        #        if diff > 1e-6:
        #            print("[%d,%d] diff = %g - %g = %g" % (i,j,L3[i,j],L[i,j],L3[i,j]-L[i,j]))
        self.assertArraysAlmostEqual(L, L1)
        self.assertArraysAlmostEqual(L, L2)
        self.assertArraysAlmostEqual(L, L3)
Beispiel #2
0
    def test_memory(self):
        ds = pygsti.objects.DataSet(fileToLoadFrom=compare_files +
                                    "/analysis.dataset")
        with self.assertRaises(MemoryError):
            pygsti.logl_hessian(std.gs_target,
                                ds,
                                probClipInterval=(-1e6, 1e6),
                                countVecMx=None,
                                poissonPicture=True,
                                check=False,
                                memLimit=0)  # No memory for you

        L = pygsti.logl_hessian(std.gs_target,
                                ds,
                                probClipInterval=(-1e6, 1e6),
                                countVecMx=None,
                                poissonPicture=True,
                                check=False,
                                memLimit=370000000)  # Limit memory a bit
        pygsti.logl_hessian(std.gs_target,
                            ds,
                            probClipInterval=(-1e6, 1e6),
                            countVecMx=None,
                            poissonPicture=True,
                            check=False,
                            memLimit=25000000)  # Limit memory a bit more
        with self.assertRaises(MemoryError):
            pygsti.logl_hessian(
                std.gs_target,
                ds,
                probClipInterval=(-1e6, 1e6),
                countVecMx=None,
                poissonPicture=True,
                check=False,
                memLimit=30000)  # Until another error is thrown
Beispiel #3
0
    def test_hessian_mpi(self):
        from mpi4py import MPI
        comm = MPI.COMM_WORLD
        ds   = pygsti.objects.DataSet(fileToLoadFrom=compare_files + "/analysis.dataset")
        L = pygsti.logl_hessian(std.gs_target, ds,
                                probClipInterval=(-1e6,1e6), countVecMx=None, memLimit=25000000,
                                poissonPicture=True, check=False, comm=comm)

        print(L)
Beispiel #4
0
    def test_logl_fn(self):
        ds          = pygsti.objects.DataSet(fileToLoadFrom=compare_files + "/analysis.dataset")
        gatestrings = pygsti.construction.gatestring_list( [ ('Gx',), ('Gy',), ('Gx','Gx') ] )
        spam_labels = std.gs_target.get_spam_labels()
        pygsti.create_count_vec_dict( spam_labels, ds, gatestrings )
        gateset = pygsti.io.load_gateset(compare_files + "/analysis.gateset")

        L1 = pygsti.logl(gateset, ds, gatestrings,
                         probClipInterval=(-1e6,1e6), countVecMx=None,
                         poissonPicture=True, check=False)
        L2 = pygsti.logl(gateset, ds, gatestrings,
                         probClipInterval=(-1e6,1e6), countVecMx=None,
                         poissonPicture=False, check=False) #Non-poisson-picture

        dL1 = pygsti.logl_jacobian(gateset, ds, gatestrings,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=True, check=False)
        dL2 = pygsti.logl_jacobian(gateset, ds, gatestrings,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=False, check=False)
        dL2b = pygsti.logl_jacobian(gateset, ds, None,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=False, check=False) #test None as gs list


        hL1 = pygsti.logl_hessian(gateset, ds, gatestrings,
                                  probClipInterval=(-1e6,1e6), radius=1e-4,
                                  poissonPicture=True, check=False)

        hL2 = pygsti.logl_hessian(gateset, ds, gatestrings,
                                  probClipInterval=(-1e6,1e6), radius=1e-4,
                                  poissonPicture=False, check=False)
        hL2b = pygsti.logl_hessian(gateset, ds, None,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=False, check=False) #test None as gs list


        maxL1 = pygsti.logl_max(ds, gatestrings, poissonPicture=True, check=True)
        maxL2 = pygsti.logl_max(ds, gatestrings, poissonPicture=False, check=True)

        pygsti.cptp_penalty(gateset, include_spam_penalty=True)
        twoDelta1 = pygsti.two_delta_loglfn(N=100, p=0.5, f=0.6, minProbClip=1e-6, poissonPicture=True)
        twoDelta2 = pygsti.two_delta_loglfn(N=100, p=0.5, f=0.6, minProbClip=1e-6, poissonPicture=False)
Beispiel #5
0
    def test_hessian_mpi(self):
        from mpi4py import MPI
        comm = MPI.COMM_WORLD
        ds   = pygsti.objects.DataSet(fileToLoadFrom=compare_files + "/analysis.dataset")
        gateset = pygsti.io.load_gateset(compare_files + "/analysis.gateset")
        L = pygsti.logl_hessian(gateset, ds,
                                probClipInterval=(-1e6,1e6), memLimit=25000000,
                                poissonPicture=True, check=False, comm=comm)

        print(L)
Beispiel #6
0
    def test_logl_fn(self):
        ds          = pygsti.objects.DataSet(fileToLoadFrom=compare_files + "/analysis.dataset%s" % self.versionsuffix)
        circuits = pygsti.construction.circuit_list( [ ('Gx',), ('Gy',), ('Gx','Gx') ] )
        #OLD spam_labels = std.target_model().get_spam_labels()
        #OLD pygsti.create_count_vec_dict( spam_labels, ds, circuits )
        model = pygsti.io.load_model(compare_files + "/analysis.model")

        L1 = pygsti.logl(model, ds, circuits,
                         probClipInterval=(-1e6,1e6),
                         poissonPicture=True, check=False)
        L2 = pygsti.logl(model, ds, circuits,
                         probClipInterval=(-1e6,1e6),
                         poissonPicture=False, check=False) #Non-poisson-picture

        dL1 = pygsti.logl_jacobian(model, ds, circuits,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=True, check=False)
        dL2 = pygsti.logl_jacobian(model, ds, circuits,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=False, check=False)
        dL2b = pygsti.logl_jacobian(model, ds, None,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=False, check=False) #test None as mdl list


        hL1 = pygsti.logl_hessian(model, ds, circuits,
                                  probClipInterval=(-1e6,1e6), radius=1e-4,
                                  poissonPicture=True, check=False)

        hL2 = pygsti.logl_hessian(model, ds, circuits,
                                  probClipInterval=(-1e6,1e6), radius=1e-4,
                                  poissonPicture=False, check=False)
        hL2b = pygsti.logl_hessian(model, ds, None,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=False, check=False) #test None as mdl list


        maxL1 = pygsti.logl_max(model, ds, circuits, poissonPicture=True, check=True)
        maxL2 = pygsti.logl_max(model, ds, circuits, poissonPicture=False, check=True)

        pygsti.cptp_penalty(model, include_spam_penalty=True)
        twoDelta1 = pygsti.two_delta_loglfn(N=100, p=0.5, f=0.6, minProbClip=1e-6, poissonPicture=True)
        twoDelta2 = pygsti.two_delta_loglfn(N=100, p=0.5, f=0.6, minProbClip=1e-6, poissonPicture=False)
Beispiel #7
0
    def test_hessian_mpi(self):
        from mpi4py import MPI
        comm = MPI.COMM_WORLD
        ds   = pygsti.objects.DataSet(fileToLoadFrom=compare_files + "/analysis.dataset%s" % self.versionsuffix)
        model = pygsti.io.load_model(compare_files + "/analysis.model")
        L = pygsti.logl_hessian(model, ds,
                                probClipInterval=(-1e6,1e6), memLimit=25000000,
                                poissonPicture=True, check=False, comm=comm)

        print(L)
Beispiel #8
0
    def test_logl_fn(self):
        ds          = pygsti.objects.DataSet(fileToLoadFrom=compare_files + "/analysis.dataset")
        gatestrings = pygsti.construction.gatestring_list( [ ('Gx',), ('Gy',), ('Gx','Gx') ] )
        spam_labels = std.gs_target.get_spam_labels()
        pygsti.create_count_vec_dict( spam_labels, ds, gatestrings )

        L1 = pygsti.logl(std.gs_target, ds, gatestrings,
                         probClipInterval=(-1e6,1e6), countVecMx=None,
                         poissonPicture=True, check=False)
        L2 = pygsti.logl(std.gs_target, ds, gatestrings,
                         probClipInterval=(-1e6,1e6), countVecMx=None,
                         poissonPicture=False, check=False) #Non-poisson-picture

        dL1 = pygsti.logl_jacobian(std.gs_target, ds, gatestrings,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=True, check=False)
        dL2 = pygsti.logl_jacobian(std.gs_target, ds, gatestrings,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=False, check=False)
        dL2b = pygsti.logl_jacobian(std.gs_target, ds, None,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=False, check=False) #test None as gs list


        hL1 = pygsti.logl_hessian(std.gs_target, ds, gatestrings,
                                  probClipInterval=(-1e6,1e6), radius=1e-4,
                                  poissonPicture=True, check=False)

        hL2 = pygsti.logl_hessian(std.gs_target, ds, gatestrings,
                                  probClipInterval=(-1e6,1e6), radius=1e-4,
                                  poissonPicture=False, check=False)
        hL2b = pygsti.logl_hessian(std.gs_target, ds, None,
                                   probClipInterval=(-1e6,1e6), radius=1e-4,
                                   poissonPicture=False, check=False) #test None as gs list


        maxL1 = pygsti.logl_max(ds, gatestrings, poissonPicture=True, check=True)
        maxL2 = pygsti.logl_max(ds, gatestrings, poissonPicture=False, check=True)

        pygsti.cptp_penalty(std.gs_target, include_spam_penalty=True)
        twoDelta1 = pygsti.two_delta_loglfn(N=100, p=0.5, f=0.6, minProbClip=1e-6, poissonPicture=True)
        twoDelta2 = pygsti.two_delta_loglfn(N=100, p=0.5, f=0.6, minProbClip=1e-6, poissonPicture=False)
Beispiel #9
0
    def test_memory(self):
        def musage(prefix):
            p = psutil.Process(os.getpid())
            print(prefix, p.memory_info()[0])

        current_mem = pygsti.baseobjs.profiler._get_mem_usage

        musage("Initial")
        ds = pygsti.data.DataSet(file_to_load_from=compare_files +
                                 "/analysis.dataset")
        model = pygsti.io.load_model(compare_files + "/analysis.model")
        musage("Pt1")

        with self.assertRaises(MemoryError):
            pygsti.logl_hessian(model,
                                ds,
                                prob_clip_interval=(-1e6, 1e6),
                                poisson_picture=True,
                                mem_limit=0)  # No memory for you

        musage("Pt2")
        L = pygsti.logl_hessian(model,
                                ds,
                                prob_clip_interval=(-1e6, 1e6),
                                poisson_picture=True,
                                mem_limit=None,
                                verbosity=10)  # Reference: no mem limit
        musage("Pt3")
        L1 = pygsti.logl_hessian(model,
                                 ds,
                                 prob_clip_interval=(-1e6, 1e6),
                                 poisson_picture=True,
                                 mem_limit=1024.0**3,
                                 verbosity=10)  # Limit memory (1GB)
        musage("Pt4")
        #L2 = pygsti.logl_hessian(model, ds,prob_clip_interval=(-1e6,1e6),
        #                         poisson_picture=True, mem_limit=current_mem()+1000000, verbosity=10) # Limit memory a bit more
        #musage("Pt5")
        #L3 = pygsti.logl_hessian(model, ds, prob_clip_interval=(-1e6,1e6),
        #                         poisson_picture=True, mem_limit=current_mem()+300000, verbosity=10) # Very low memory (splits tree)

        #We've currently disabled memory errors - re-enable this after we get memory checks working again.
        #with self.assertRaises(MemoryError):
        pygsti.logl_hessian(model,
                            ds,
                            prob_clip_interval=(-1e6, 1e6),
                            poisson_picture=True,
                            mem_limit=1024.0**3)

        #print("****DEBUG LOGL HESSIAN L****")
        #print("shape = ",L.shape)
        #to_check = L
        #for i in range(L.shape[0]):
        #    for j in range(L.shape[1]):
        #        diff = abs(L3[i,j]-L[i,j])
        #        if diff > 1e-6:
        #            print("[%d,%d] diff = %g - %g = %g" % (i,j,L3[i,j],L[i,j],L3[i,j]-L[i,j]))
        self.assertArraysAlmostEqual(L, L1)
Beispiel #10
0
    def test_hessian_mpi(self):
        try:
            from mpi4py import MPI
            comm = MPI.COMM_WORLD
            current_mem = pygsti.baseobjs.profiler._get_mem_usage
            ds = pygsti.data.DataSet(file_to_load_from=compare_files +
                                     "/analysis.dataset")
            model = pygsti.io.load_model(compare_files + "/analysis.model")
            L = pygsti.logl_hessian(model,
                                    ds,
                                    prob_clip_interval=(-1e6, 1e6),
                                    mem_limit=500 * 1024**2 + current_mem(),
                                    poisson_picture=True,
                                    comm=comm)

            print(L)
        except ImportError:
            self.skipTest('Skipping because failed to import MPI')
Beispiel #11
0
    def test_memory(self):
        ds = pygsti.objects.DataSet(fileToLoadFrom=compare_files + "/analysis.dataset")
        with self.assertRaises(MemoryError):
            pygsti.logl_hessian(std.gs_target, ds,
                                probClipInterval=(-1e6,1e6), countVecMx=None,
                                poissonPicture=True, check=False, memLimit=0) # No memory for you

        L = pygsti.logl_hessian(std.gs_target, ds,
                            probClipInterval=(-1e6,1e6), countVecMx=None,
                            poissonPicture=True, check=False, memLimit=370000000) # Limit memory a bit
        pygsti.logl_hessian(std.gs_target, ds,
                            probClipInterval=(-1e6,1e6), countVecMx=None,
                            poissonPicture=True, check=False, memLimit=25000000) # Limit memory a bit more
        with self.assertRaises(MemoryError):
            pygsti.logl_hessian(std.gs_target, ds,
                                probClipInterval=(-1e6,1e6), countVecMx=None,
                                poissonPicture=True, check=False, memLimit=30000) # Until another error is thrown