def fit_network_hawkes_gibbs(S, K, C, dt, dt_max,
                             output_path,
                             standard_model=None):

    # Check for existing Gibbs results
    if os.path.exists(output_path + ".gibbs.pkl"):
        with open(output_path + ".gibbs.pkl", 'r') as f:
            print "Loading Gibbs results from ", (output_path + ".gibbs.pkl")
            (samples, timestamps) = cPickle.load(f)

    else:
        print "Fitting the data with a network Hawkes model using Gibbs sampling"

        # Make a new model for inference
        # test_model = DiscreteTimeNetworkHawkesModelGammaMixture(C=C, K=K, dt=dt, dt_max=dt_max, B=B,
        #                                                         alpha=1.0, beta=1.0/20.0)
        test_basis = IdentityBasis(dt, dt_max, allow_instantaneous=True)
        network_hypers = {'C': C, 'alpha': 1.0, 'beta': 1.0/10.0,
                          'tau1': 1.0, 'tau0': 10.0,
                          'allow_self_connections': False}
        test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, dt_max=dt_max,
                                                                basis=test_basis,
                                                                network_hypers=network_hypers)
        test_model.add_data(S)

        # Initialize with the standard model parameters
        if standard_model is not None:
            test_model.initialize_with_standard_model(standard_model)

        plt.ion()
        im = plot_network(test_model.weight_model.A, test_model.weight_model.W, vmax=0.5)
        plt.pause(0.001)

        # Gibbs sample
        N_samples = 100
        samples = []
        lps = [test_model.log_probability()]
        timestamps = []
        for itr in xrange(N_samples):
            if itr % 1 == 0:
                print "Iteration ", itr, "\tLL: ", lps[-1]
                im.set_data(test_model.weight_model.W_effective)
                plt.pause(0.001)

            # lps.append(test_model.log_probability())
            lps.append(test_model.log_probability())
            samples.append(test_model.resample_and_copy())
            timestamps.append(time.clock())

            # Save this sample
            with open(output_path + ".gibbs.itr%04d.pkl" % itr, 'w') as f:
                cPickle.dump(samples[-1], f, protocol=-1)

        # Save the Gibbs samples
        with open(output_path + ".gibbs.pkl", 'w') as f:
            print "Saving Gibbs samples to ", (output_path + ".gibbs.pkl")
            cPickle.dump((samples, timestamps), f, protocol=-1)

    return samples, timestamps
def demo(K=3, T=1000, dt_max=20, p=0.25):
    """

    :param K:       Number of nodes
    :param T:       Number of time bins to simulate
    :param dt_max:  Number of future time bins an event can influence
    :param p:       Sparsity of network
    :return:
    """
    ###########################################################
    # Generate synthetic data
    ###########################################################
    network_hypers = {"p": p, "allow_self_connections": False}
    true_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K, dt_max=dt_max,
        network_hypers=network_hypers)
    assert true_model.check_stability()

    # Sample from the true model
    S,R = true_model.generate(T=T, keep=True, print_interval=50)

    plt.ion()
    true_figure, _ = true_model.plot(color="#377eb8", T_slice=(0,100))

    ###########################################################
    # Create a test spike and slab model
    ###########################################################
    test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K, dt_max=dt_max,
        network_hypers=network_hypers)

    test_model.add_data(S)

    # Initialize plots
    test_figure, test_handles = test_model.plot(color="#e41a1c", T_slice=(0,100))

    ###########################################################
    # Fit the test model with Gibbs sampling
    ###########################################################
    N_samples = 100
    samples = []
    lps = []
    for itr in range(N_samples):
        print("Gibbs iteration ", itr)
        test_model.resample_model()
        lps.append(test_model.log_probability())
        samples.append(test_model.copy_sample())

        # Update plots
        test_model.plot(handles=test_handles)

    ###########################################################
    # Analyze the samples
    ###########################################################
    analyze_samples(true_model, samples, lps)
Beispiel #3
0
def demo(K=3, T=1000, dt_max=20, p=0.25):
    """

    :param K:       Number of nodes
    :param T:       Number of time bins to simulate
    :param dt_max:  Number of future time bins an event can influence
    :param p:       Sparsity of network
    :return:
    """
    ###########################################################
    # Generate synthetic data
    ###########################################################
    network_hypers = {"p": p, "allow_self_connections": False}
    true_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K, dt_max=dt_max,
        network_hypers=network_hypers)
    assert true_model.check_stability()

    # Sample from the true model
    S,R = true_model.generate(T=T, keep=True, print_interval=50)

    plt.ion()
    true_figure, _ = true_model.plot(color="#377eb8", T_slice=(0,100))

    ###########################################################
    # Create a test spike and slab model
    ###########################################################
    test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K, dt_max=dt_max,
        network_hypers=network_hypers)

    test_model.add_data(S)

    # Initialize plots
    test_figure, test_handles = test_model.plot(color="#e41a1c", T_slice=(0,100))

    ###########################################################
    # Fit the test model with Gibbs sampling
    ###########################################################
    N_samples = 100
    samples = []
    lps = []
    for itr in xrange(N_samples):
        print "Gibbs iteration ", itr
        test_model.resample_model()
        lps.append(test_model.log_probability())
        samples.append(test_model.copy_sample())

        # Update plots
        test_model.plot(handles=test_handles)

    ###########################################################
    # Analyze the samples
    ###########################################################
    analyze_samples(true_model, samples, lps)
Beispiel #4
0
def fit_network_hawkes_gibbs_ss(S, K, C, B, dt, dt_max,
                                output_path, p,
                                standard_model=None):

    samples_and_timestamps = load_partial_results(output_path, typ="gibbs_ss")
    if samples_and_timestamps is not None:
        samples, timestamps = samples_and_timestamps


    else:
        print "Fitting the data with a spike and slab network Hawkes model using Gibbs sampling"

        # Make a new model for inference
        network_hypers = {'C': C, 'alpha': 1.0, 'beta': 1.0/20.0, 'p': p,
                          'v': 5.0,'c': np.arange(C).repeat((K // C))}
        test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, dt_max=dt_max, B=B,
                                                                network_hypers=network_hypers)
        test_model.add_data(S)

        # Initialize with the standard model parameters
        if standard_model is not None:
            test_model.initialize_with_standard_model(standard_model)

        # Gibbs sample
        N_samples = 1000
        samples = []
        lps = []
        timestamps = [time.clock()]
        for itr in xrange(N_samples):
            lps.append(test_model.log_probability())
            samples.append(test_model.resample_and_copy())
            timestamps.append(time.clock())

            print test_model.network.v

            if itr % 1 == 0:
                print "Iteration ", itr, "\t LP: ", lps[-1]

            # Save this sample
            with open(output_path + ".gibbs_ss.itr%04d.pkl" % itr, 'w') as f:
                cPickle.dump((samples[-1], timestamps[-1]-timestamps[0]), f, protocol=-1)

        # Save the Gibbs timestamps
        timestamps = np.array(timestamps)
        with open(output_path + ".gibbs_ss.timestamps.pkl", 'w') as f:
            print "Saving spike and slab Gibbs samples to ", (output_path + ".gibbs_ss.timestamps.pkl")
            cPickle.dump(timestamps, f, protocol=-1)

        # Save the Gibbs samples
        with open(output_path + ".gibbs_ss.pkl", 'w') as f:
            print "Saving Gibbs samples to ", (output_path + ".gibbs_ss.pkl")
            cPickle.dump((samples, timestamps[1:] - timestamps[0]), f, protocol=-1)

    return samples, timestamps
Beispiel #5
0
def demo(K=3, T=1000, dt_max=20, p=0.25):
    """

    :param K:       Number of nodes
    :param T:       Number of time bins to simulate
    :param dt_max:  Number of future time bins an event can influence
    :param p:       Sparsity of network
    :return:
    """
    ###########################################################
    # Generate synthetic data
    ###########################################################
    network = ErdosRenyiFixedSparsity(K, p, v=1., allow_self_connections=False)
    bkgd_hypers = {"alpha": 1.0, "beta": 20.0}
    true_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K, dt_max=dt_max, bkgd_hypers=bkgd_hypers, network=network)
    A_true = np.zeros((K, K))
    A_true[0, 1] = A_true[0, 2] = 1
    W_true = np.zeros((K, K))
    W_true[0, 1] = W_true[0, 2] = 1.0
    true_model.weight_model.A = A_true
    true_model.weight_model.W = W_true
    true_model.bias_model.lambda0[0] = 0.2
    assert true_model.check_stability()

    # Sample from the true model
    S, R = true_model.generate(T=T, keep=True, print_interval=50)

    plt.ion()
    true_figure, _ = true_model.plot(color="#377eb8", T_slice=(0, 100))

    # Save the true figure
    true_figure.savefig("gifs/true.gif")

    ###########################################################
    # Create a test spike and slab model
    ###########################################################
    test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K,
                                                            dt_max=dt_max,
                                                            network=network)

    test_model.add_data(S)

    # Initialize plots
    test_figure, test_handles = test_model.plot(color="#e41a1c",
                                                T_slice=(0, 100))
    test_figure.savefig("gifs/test0.gif")

    ###########################################################
    # Fit the test model with Gibbs sampling
    ###########################################################
    N_samples = 100
    samples = []
    lps = []
    for itr in xrange(N_samples):
        print "Gibbs iteration ", itr
        test_model.resample_model()
        lps.append(test_model.log_probability())
        samples.append(test_model.copy_sample())

        # Update plots
        test_model.plot(handles=test_handles)
        test_figure.savefig("gifs/test%d.gif" % (itr + 1))
Beispiel #6
0
def test_gibbs_sbm(seed=None):
    """
    Create a discrete time Hawkes model and generate from it.

    :return:
    """
    if seed is None:
        seed = np.random.randint(2**32)

    print "Setting seed to ", seed
    np.random.seed(seed)

    C = 10
    K = 100
    T = 1000
    dt = 1.0
    B = 3

    # Generate from a true model
    network_hypers = {'C': C, 'beta': 1.0 / K}
    true_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K, dt=dt, B=B, network_hypers=network_hypers)
    # S,R = true_model.generate(T=T)
    c = true_model.network.c
    perm = np.argsort(c)

    # Plot the true network
    plt.ion()
    plot_network(true_model.weight_model.A[np.ix_(perm, perm)],
                 true_model.weight_model.W[np.ix_(perm, perm)])
    plt.pause(0.001)

    # Make a new model for inference
    network_hypers = {'C': C, 'beta': 1.0 / K}
    test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K, dt=dt, B=B, network_hypers=network_hypers)
    # test_model.add_data(S)

    # Gibbs sample
    N_samples = 10
    samples = []
    lps = []
    for itr in xrange(N_samples):
        if itr % 5 == 0:
            print "Iteration: ", itr
        samples.append(copy.deepcopy(test_model.get_parameters()))

        lps.append(test_model.log_probability())

        # Resample the network only
        test_model.network.resample(
            (true_model.weight_model.A, true_model.weight_model.W))

    plt.ioff()

    # Compute sample statistics for second half of samples
    c_samples = np.array([c for _, _, _, _, c, _, _, _ in samples])

    print "True c: ", true_model.network.c
    print "Test c: ", c_samples[-10:, :]

    # Compute the adjusted mutual info score of the clusterings
    amis = []
    arss = []
    for c in c_samples:
        amis.append(adjusted_mutual_info_score(true_model.network.c, c))
        arss.append(adjusted_rand_score(true_model.network.c, c))

    plt.figure()
    plt.plot(np.arange(N_samples), amis, '-r')
    plt.plot(np.arange(N_samples), arss, '-b')
    plt.xlabel("Iteration")
    plt.ylabel("Clustering score")
    plt.show()
Beispiel #7
0
def fit_spikeslab_network_hawkes_gibbs(S,
                                       S_test,
                                       dt,
                                       dt_max,
                                       output_path,
                                       model_args={},
                                       standard_model=None,
                                       N_samples=100,
                                       time_limit=8 * 60 * 60):

    T, K = S.shape

    # Check for existing Gibbs results
    if os.path.exists(output_path):
        with gzip.open(output_path, 'r') as f:
            print("Loading Gibbs results from ", output_path)
            results = pickle.load(f)
    else:
        print(
            "Fitting the data with a network Hawkes model using Gibbs sampling"
        )

        test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K,
                                                                dt=dt,
                                                                dt_max=dt_max,
                                                                **model_args)
        test_model.add_data(S)

        # Initialize with the standard model parameters
        if standard_model is not None:
            test_model.initialize_with_standard_model(standard_model)

        # TODO: Precompute F_test
        F_test = test_model.basis.convolve_with_basis(S_test)

        # Gibbs sample
        samples = []
        lps = [test_model.log_probability()]
        hlls = [test_model.heldout_log_likelihood(S_test)]
        times = [0]
        for _ in progprint_xrange(N_samples, perline=10):
            # Update the model
            tic = time.time()
            test_model.resample_model()
            samples.append(copy.deepcopy(test_model.get_parameters()))
            times.append(time.time() - tic)

            # Compute log probability and heldout log likelihood
            # lps.append(test_model.log_probability())
            hlls.append(test_model.heldout_log_likelihood(S_test, F=F_test))

            # # Save this sample
            # with open(output_path + ".gibbs.itr%04d.pkl" % itr, 'w') as f:
            #     cPickle.dump(samples[-1], f, protocol=-1)

            # Check if time limit has been exceeded
            if np.sum(times) > time_limit:
                break

        # Get cumulative timestamps
        timestamps = np.cumsum(times)
        lps = np.array(lps)
        hlls = np.array(hlls)

        # Make results object
        results = Results(samples, timestamps, lps, hlls)

        # Save the Gibbs samples
        with gzip.open(output_path, 'w') as f:
            print("Saving Gibbs samples to ", output_path)
            pickle.dump(results, f, protocol=-1)

    return results
def demo(seed=None):
    """
    Create a discrete time Hawkes model and generate from it.

    :return:
    """
    if seed is None:
        seed = np.random.randint(2**32)

    print("Setting seed to ", seed)
    np.random.seed(seed)

    ###########################################################
    # Load some example data.
    # See data/synthetic/generate.py to create more.
    ###########################################################
    data_path = os.path.join("data", "synthetic",
                             "synthetic_K20_C4_T10000.pkl.gz")
    with gzip.open(data_path, 'r') as f:
        S, true_model = pickle.load(f)

    T = S.shape[0]
    K = true_model.K
    B = true_model.B
    dt = true_model.dt
    dt_max = true_model.dt_max

    ###########################################################
    # Initialize with MAP estimation on a standard Hawkes model
    ###########################################################
    init_with_map = True
    if init_with_map:
        init_len = T
        print("Initializing with BFGS on first ", init_len, " time bins.")
        init_model = DiscreteTimeStandardHawkesModel(K=K,
                                                     dt=dt,
                                                     dt_max=dt_max,
                                                     B=B,
                                                     alpha=1.0,
                                                     beta=1.0)
        init_model.add_data(S[:init_len, :])

        init_model.initialize_to_background_rate()
        init_model.fit_with_bfgs()
    else:
        init_model = None

    ###########################################################
    # Create a test spike and slab model
    ###########################################################

    # Copy the network hypers.
    # Give the test model p, but not c, v, or m
    network_hypers = true_model.network_hypers.copy()
    network_hypers['c'] = None
    network_hypers['v'] = None
    network_hypers['m'] = None
    test_network = StochasticBlockModel(K=K, **network_hypers)
    test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K,
        dt=dt,
        dt_max=dt_max,
        B=B,
        basis_hypers=true_model.basis_hypers,
        bkgd_hypers=true_model.bkgd_hypers,
        impulse_hypers=true_model.impulse_hypers,
        weight_hypers=true_model.weight_hypers,
        network=test_network)
    test_model.add_data(S)
    # F_test = test_model.basis.convolve_with_basis(S_test)

    # Initialize with the standard model parameters
    if init_model is not None:
        test_model.initialize_with_standard_model(init_model)

    # Initialize plots
    ln, im_net, im_clus = initialize_plots(true_model, test_model, S)

    ###########################################################
    # Fit the test model with Gibbs sampling
    ###########################################################
    N_samples = 50
    samples = []
    lps = []
    # plls = []
    for itr in range(N_samples):
        lps.append(test_model.log_probability())
        # plls.append(test_model.heldout_log_likelihood(S_test, F=F_test))
        samples.append(test_model.copy_sample())

        print("")
        print("Gibbs iteration ", itr)
        print("LP: ", lps[-1])

        test_model.resample_model()

        # Update plot
        if itr % 1 == 0:
            update_plots(itr, test_model, S, ln, im_clus, im_net)

    ###########################################################
    # Analyze the samples
    ###########################################################
    analyze_samples(true_model, init_model, samples, lps)
Beispiel #9
0
def geweke_test():
    """
    Create a discrete time Hawkes model and generate from it.

    :return:
    """
    T = 50
    dt = 1.0
    dt_max = 3.0
    network_hypers = {
        'C': 1,
        'p': 0.5,
        'kappa': 3.0,
        'alpha': 3.0,
        'beta': 1.0 / 20.0
    }
    model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=1, dt=dt, dt_max=dt_max, network_hypers=network_hypers)
    model.generate(T=T)

    # Gibbs sample and then generate new data
    N_samples = 10000
    samples = []
    lps = []
    for itr in xrange(N_samples):
        if itr % 10 == 0:
            print "Iteration: ", itr
        # Resample the model
        model.resample_model()
        samples.append(model.copy_sample())
        lps.append(model.log_probability())

        # Geweke step
        model.data_list.pop()
        model.generate(T=T)

    # Compute sample statistics for second half of samples
    A_samples = np.array([s.weight_model.A for s in samples])
    W_samples = np.array([s.weight_model.W for s in samples])
    g_samples = np.array([s.impulse_model.g for s in samples])
    lambda0_samples = np.array([s.bias_model.lambda0 for s in samples])
    c_samples = np.array([s.network.c for s in samples])
    p_samples = np.array([s.network.p for s in samples])
    v_samples = np.array([s.network.v for s in samples])
    lps = np.array(lps)

    offset = 0
    A_mean = A_samples[offset:, ...].mean(axis=0)
    W_mean = W_samples[offset:, ...].mean(axis=0)
    g_mean = g_samples[offset:, ...].mean(axis=0)
    lambda0_mean = lambda0_samples[offset:, ...].mean(axis=0)

    print "A mean:        ", A_mean
    print "W mean:        ", W_mean
    print "g mean:        ", g_mean
    print "lambda0 mean:  ", lambda0_mean

    # Plot the log probability over iterations
    plt.figure()
    plt.plot(np.arange(N_samples), lps)
    plt.xlabel("Iteration")
    plt.ylabel("Log probability")

    # Plot the histogram of bias samples
    plt.figure()
    p_lmbda0 = gamma(model.bias_model.alpha, scale=1. / model.bias_model.beta)
    _, bins, _ = plt.hist(lambda0_samples[:, 0],
                          bins=20,
                          alpha=0.5,
                          normed=True)
    bincenters = 0.5 * (bins[1:] + bins[:-1])
    plt.plot(bincenters, p_lmbda0.pdf(bincenters), 'r--', linewidth=1)
    plt.xlabel('lam0')
    plt.ylabel('p(lam0)')

    print "Expected p(A):  ", model.network.P
    print "Empirical p(A): ", A_samples.mean(axis=0)

    # Plot the histogram of weight samples
    plt.figure()
    Aeq1 = A_samples[:, 0, 0] == 1
    # p_W1 = gamma(model.network.kappa, scale=1./model.network.v[0,0])

    # The marginal distribution of W under a gamma prior on the scale
    # is a beta prime distribution
    p_W1 = betaprime(model.network.kappa,
                     model.network.alpha,
                     scale=model.network.beta)

    _, bins, _ = plt.hist(W_samples[Aeq1, 0, 0],
                          bins=20,
                          alpha=0.5,
                          normed=True)
    bincenters = 0.5 * (bins[1:] + bins[:-1])
    plt.plot(bincenters, p_W1.pdf(bincenters), 'r--', linewidth=1)
    plt.xlabel('W')
    plt.ylabel('p(W | A=1)')

    # Plot the histogram of impulse samples
    plt.figure()
    for b in range(model.B):
        plt.subplot(1, model.B, b + 1)
        a = model.impulse_model.gamma[b]
        b = model.impulse_model.gamma.sum() - a
        p_beta11b = beta(a, b)

        _, bins, _ = plt.hist(g_samples[:, 0, 0, b],
                              bins=20,
                              alpha=0.5,
                              normed=True)
        bincenters = 0.5 * (bins[1:] + bins[:-1])
        plt.plot(bincenters, p_beta11b.pdf(bincenters), 'r--', linewidth=1)
        plt.xlabel('g_%d' % b)
        plt.ylabel('p(g_%d)' % b)

    # Plot the histogram of weight scale
    plt.figure()
    for c1 in range(model.C):
        for c2 in range(model.C):
            plt.subplot(model.C, model.C, 1 + c1 * model.C + c2)
            p_v = gamma(model.network.alpha, scale=1. / model.network.beta)

            _, bins, _ = plt.hist(v_samples[:, c1, c2],
                                  bins=20,
                                  alpha=0.5,
                                  normed=True)
            bincenters = 0.5 * (bins[1:] + bins[:-1])
            plt.plot(bincenters, p_v.pdf(bincenters), 'r--', linewidth=1)
            plt.xlabel('v_{%d,%d}' % (c1, c2))
            plt.ylabel('p(v)')

    plt.show()
def fit_network_hawkes_gibbs(S, K, C, dt, dt_max, output_path, standard_model=None):

    # Check for existing Gibbs results
    if os.path.exists(output_path + ".gibbs.pkl"):
        with open(output_path + ".gibbs.pkl", "r") as f:
            print "Loading Gibbs results from ", (output_path + ".gibbs.pkl")
            (samples, timestamps) = cPickle.load(f)

    else:
        print "Fitting the data with a network Hawkes model using Gibbs sampling"

        # Make a new model for inference
        # test_model = DiscreteTimeNetworkHawkesModelGammaMixture(C=C, K=K, dt=dt, dt_max=dt_max, B=B,
        #                                                         alpha=1.0, beta=1.0/20.0)
        test_basis = IdentityBasis(dt, dt_max, allow_instantaneous=True)

        # Set the network prior such that E[W] ~= 0.01
        # W ~ Gamma(kappa, v) for kappa = 1.25 => v ~ 125
        # v ~ Gamma(alpha, beta) for alpha = 10, beta = 10 / 125
        E_W = 0.01
        kappa = 10.0
        E_v = kappa / E_W
        alpha = 10.0
        beta = alpha / E_v
        network_hypers = {
            "C": 2,
            "kappa": kappa,
            "alpha": alpha,
            "beta": beta,
            "p": 0.8,
            "allow_self_connections": False,
        }
        test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
            K=K, dt=dt, dt_max=dt_max, basis=test_basis, network_hypers=network_hypers
        )
        test_model.add_data(S)

        # Initialize with the standard model parameters
        if standard_model is not None:
            test_model.initialize_with_standard_model(standard_model)

        plt.ion()
        im = plot_network(test_model.weight_model.A, test_model.weight_model.W, vmax=0.5)
        plt.pause(0.001)

        # Gibbs sample
        N_samples = 100
        samples = []
        lps = [test_model.log_probability()]
        timestamps = []
        for itr in xrange(N_samples):
            if itr % 1 == 0:
                print "Iteration ", itr, "\tLL: ", lps[-1]
                im.set_data(test_model.weight_model.W_effective)
                plt.pause(0.001)

            # lps.append(test_model.log_probability())
            lps.append(test_model.log_probability())
            samples.append(test_model.resample_and_copy())
            timestamps.append(time.clock())

            # Save this sample
            with open(output_path + ".gibbs.itr%04d.pkl" % itr, "w") as f:
                cPickle.dump(samples[-1], f, protocol=-1)

        # Save the Gibbs samples
        with open(output_path + ".gibbs.pkl", "w") as f:
            print "Saving Gibbs samples to ", (output_path + ".gibbs.pkl")
            cPickle.dump((samples, timestamps), f, protocol=-1)

    return samples, timestamps
Beispiel #11
0
def fit_spikeslab_network_hawkes_gibbs(S, S_test, dt, dt_max, output_path,
                                       model_args={}, standard_model=None,
                                       N_samples=100, time_limit=8*60*60):

    T,K = S.shape

    # Check for existing Gibbs results
    if os.path.exists(output_path):
        with gzip.open(output_path, 'r') as f:
            print "Loading Gibbs results from ", output_path
            results = cPickle.load(f)
    else:
        print "Fitting the data with a network Hawkes model using Gibbs sampling"

        test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, dt_max=dt_max, **model_args)
        test_model.add_data(S)

        # Initialize with the standard model parameters
        if standard_model is not None:
            test_model.initialize_with_standard_model(standard_model)

        # TODO: Precompute F_test
        F_test = test_model.basis.convolve_with_basis(S_test)


        # Gibbs sample
        samples = []
        lps = [test_model.log_probability()]
        hlls = [test_model.heldout_log_likelihood(S_test)]
        times = [0]
        for _ in progprint_xrange(N_samples, perline=10):
            # Update the model
            tic = time.time()
            test_model.resample_model()
            samples.append(copy.deepcopy(test_model.get_parameters()))
            times.append(time.time() - tic)

            # Compute log probability and heldout log likelihood
            # lps.append(test_model.log_probability())
            hlls.append(test_model.heldout_log_likelihood(S_test, F=F_test))

            # # Save this sample
            # with open(output_path + ".gibbs.itr%04d.pkl" % itr, 'w') as f:
            #     cPickle.dump(samples[-1], f, protocol=-1)

            # Check if time limit has been exceeded
            if np.sum(times) > time_limit:
                break

        # Get cumulative timestamps
        timestamps = np.cumsum(times)
        lps = np.array(lps)
        hlls = np.array(hlls)

        # Make results object
        results = Results(samples, timestamps, lps, hlls)

        # Save the Gibbs samples
        with gzip.open(output_path, 'w') as f:
            print "Saving Gibbs samples to ", output_path
            cPickle.dump(results, f, protocol=-1)

    return results
Beispiel #12
0
def demo(seed=None):
    """
    Create a discrete time Hawkes model and generate from it.

    :return:
    """
    if seed is None:
        seed = np.random.randint(2**32)

    print "Setting seed to ", seed
    np.random.seed(seed)

    ###########################################################
    # Load some example data.
    # See data/synthetic/generate.py to create more.
    ###########################################################
    data_path = os.path.join("data", "synthetic", "synthetic_K20_C4_T10000.pkl.gz")
    with gzip.open(data_path, 'r') as f:
        S, true_model = cPickle.load(f)

    T      = S.shape[0]
    K      = true_model.K
    B      = true_model.B
    dt     = true_model.dt
    dt_max = true_model.dt_max

    ###########################################################
    # Initialize with MAP estimation on a standard Hawkes model
    ###########################################################
    init_with_map = True
    if init_with_map:
        init_len   = T
        print "Initializing with BFGS on first ", init_len, " time bins."
        init_model = DiscreteTimeStandardHawkesModel(K=K, dt=dt, dt_max=dt_max, B=B,
                                                     alpha=1.0, beta=1.0)
        init_model.add_data(S[:init_len, :])

        init_model.initialize_to_background_rate()
        init_model.fit_with_bfgs()
    else:
        init_model = None

    ###########################################################
    # Create a test spike and slab model
    ###########################################################

    # Copy the network hypers.
    # Give the test model p, but not c, v, or m
    network_hypers = true_model.network_hypers.copy()
    network_hypers['c'] = None
    network_hypers['v'] = None
    network_hypers['m'] = None
    test_network = StochasticBlockModel(K=K, **network_hypers)
    test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, dt_max=dt_max, B=B,
                                                            basis_hypers=true_model.basis_hypers,
                                                            bkgd_hypers=true_model.bkgd_hypers,
                                                            impulse_hypers=true_model.impulse_hypers,
                                                            weight_hypers=true_model.weight_hypers,
                                                            network=test_network)
    test_model.add_data(S)
    # F_test = test_model.basis.convolve_with_basis(S_test)

    # Initialize with the standard model parameters
    if init_model is not None:
        test_model.initialize_with_standard_model(init_model)

    # Initialize plots
    ln, im_net, im_clus = initialize_plots(true_model, test_model, S)

    ###########################################################
    # Fit the test model with Gibbs sampling
    ###########################################################
    N_samples = 50
    samples = []
    lps = []
    # plls = []
    for itr in xrange(N_samples):
        lps.append(test_model.log_probability())
        # plls.append(test_model.heldout_log_likelihood(S_test, F=F_test))
        samples.append(test_model.copy_sample())

        print ""
        print "Gibbs iteration ", itr
        print "LP: ", lps[-1]

        test_model.resample_model()

        # Update plot
        if itr % 1 == 0:
            update_plots(itr, test_model, S, ln, im_clus, im_net)

    ###########################################################
    # Analyze the samples
    ###########################################################
    analyze_samples(true_model, init_model, samples, lps)
Beispiel #13
0
def test_gibbs_sbm(seed=None):
    """
    Create a discrete time Hawkes model and generate from it.

    :return:
    """
    if seed is None:
        seed = np.random.randint(2**32)

    print("Setting seed to ", seed)
    np.random.seed(seed)

    C = 2
    K = 100
    c = np.arange(C).repeat(np.ceil(K/float(C)))[:K]
    T = 1000
    dt = 1.0
    B = 3

    # Generate from a true model
    true_p = np.random.rand(C,C) * 0.25
    true_network = StochasticBlockModel(K, C, c=c, p=true_p, v=10.0)
    true_model = \
        DiscreteTimeNetworkHawkesModelSpikeAndSlab(
                K=K, dt=dt, B=B, network=true_network)

    S,R = true_model.generate(T)

    # Plot the true network
    plt.ion()
    true_im = true_model.plot_adjacency_matrix()
    plt.pause(0.001)


    # Make a new model for inference
    test_network = StochasticBlockModel(K, C, beta=1./K)
    test_model = \
        DiscreteTimeNetworkHawkesModelSpikeAndSlab(
                K=K, dt=dt, B=B, network=test_network)
    test_model.add_data(S)

    # Gibbs sample
    N_samples = 100
    c_samples = []
    lps = []
    for itr in progprint_xrange(N_samples):
        c_samples.append(test_network.c.copy())
        lps.append(test_model.log_probability())

        # Resample the network only
        test_model.network.resample((true_model.weight_model.A,
                                     true_model.weight_model.W))

    c_samples = np.array(c_samples)
    plt.ioff()

    # Compute sample statistics for second half of samples
    print("True c: ", true_model.network.c)
    print("Test c: ", c_samples[-10:, :])

    # Compute the adjusted mutual info score of the clusterings
    amis = []
    arss = []
    for c in c_samples:
        amis.append(adjusted_mutual_info_score(true_model.network.c, c))
        arss.append(adjusted_rand_score(true_model.network.c, c))

    plt.figure()
    plt.plot(np.arange(N_samples), amis, '-r')
    plt.plot(np.arange(N_samples), arss, '-b')
    plt.xlabel("Iteration")
    plt.ylabel("Clustering score")
    plt.show()
Beispiel #14
0
def test_gibbs_sbm(seed=None):
    """
    Create a discrete time Hawkes model and generate from it.

    :return:
    """
    if seed is None:
        seed = np.random.randint(2**32)

    print("Setting seed to ", seed)
    np.random.seed(seed)

    C = 2
    K = 100
    c = np.arange(C).repeat(np.ceil(K / float(C)))[:K]
    T = 1000
    dt = 1.0
    B = 3

    # Generate from a true model
    true_p = np.random.rand(C, C) * 0.25
    true_network = StochasticBlockModel(K, C, c=c, p=true_p, v=10.0)
    true_model = \
        DiscreteTimeNetworkHawkesModelSpikeAndSlab(
                K=K, dt=dt, B=B, network=true_network)

    S, R = true_model.generate(T)

    # Plot the true network
    plt.ion()
    true_im = true_model.plot_adjacency_matrix()
    plt.pause(0.001)

    # Make a new model for inference
    test_network = StochasticBlockModel(K, C, beta=1. / K)
    test_model = \
        DiscreteTimeNetworkHawkesModelSpikeAndSlab(
                K=K, dt=dt, B=B, network=test_network)
    test_model.add_data(S)

    # Gibbs sample
    N_samples = 100
    c_samples = []
    lps = []
    for itr in progprint_xrange(N_samples):
        c_samples.append(test_network.c.copy())
        lps.append(test_model.log_probability())

        # Resample the network only
        test_model.network.resample(
            (true_model.weight_model.A, true_model.weight_model.W))

    c_samples = np.array(c_samples)
    plt.ioff()

    # Compute sample statistics for second half of samples
    print("True c: ", true_model.network.c)
    print("Test c: ", c_samples[-10:, :])

    # Compute the adjusted mutual info score of the clusterings
    amis = []
    arss = []
    for c in c_samples:
        amis.append(adjusted_mutual_info_score(true_model.network.c, c))
        arss.append(adjusted_rand_score(true_model.network.c, c))

    plt.figure()
    plt.plot(np.arange(N_samples), amis, '-r')
    plt.plot(np.arange(N_samples), arss, '-b')
    plt.xlabel("Iteration")
    plt.ylabel("Clustering score")
    plt.show()
Beispiel #15
0
def demo(K=3, T=1000, dt_max=20, p=0.25):
    """

    :param K:       Number of nodes
    :param T:       Number of time bins to simulate
    :param dt_max:  Number of future time bins an event can influence
    :param p:       Sparsity of network
    :return:
    """
    ###########################################################
    # Generate synthetic data
    ###########################################################
    network = ErdosRenyiFixedSparsity(K, p, v=1., allow_self_connections=False)
    bkgd_hypers = {"alpha": 1.0, "beta": 20.0}
    true_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K, dt_max=dt_max, bkgd_hypers=bkgd_hypers, network=network)
    A_true = np.zeros((K,K))
    A_true[0,1] = A_true[0,2] = 1
    W_true = np.zeros((K,K))
    W_true[0,1] = W_true[0,2] = 1.0
    true_model.weight_model.A = A_true
    true_model.weight_model.W = W_true
    true_model.bias_model.lambda0[0] = 0.2
    assert true_model.check_stability()

    # Sample from the true model
    S,R = true_model.generate(T=T, keep=True, print_interval=50)

    plt.ion()
    true_figure, _ = true_model.plot(color="#377eb8", T_slice=(0,100))

    # Save the true figure
    true_figure.savefig("gifs/true.gif")

    ###########################################################
    # Create a test spike and slab model
    ###########################################################
    test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(
        K=K, dt_max=dt_max, network=network)

    test_model.add_data(S)

    # Initialize plots
    test_figure, test_handles = test_model.plot(color="#e41a1c", T_slice=(0,100))
    test_figure.savefig("gifs/test0.gif")

    ###########################################################
    # Fit the test model with Gibbs sampling
    ###########################################################
    N_samples = 100
    samples = []
    lps = []
    for itr in xrange(N_samples):
        print "Gibbs iteration ", itr
        test_model.resample_model()
        lps.append(test_model.log_probability())
        samples.append(test_model.copy_sample())

        # Update plots
        test_model.plot(handles=test_handles)
        test_figure.savefig("gifs/test%d.gif" % (itr+1))
Beispiel #16
0
def test_gibbs_sbm(seed=None):
    """
    Create a discrete time Hawkes model and generate from it.

    :return:
    """
    if seed is None:
        seed = np.random.randint(2**32)

    print "Setting seed to ", seed
    np.random.seed(seed)

    C = 10
    K = 100
    T = 1000
    dt = 1.0
    B = 3

    # Generate from a true model
    network_hypers = {'C': C, 'beta': 1.0/K}
    true_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, B=B,
                                                            network_hypers=network_hypers)
    # S,R = true_model.generate(T=T)
    c = true_model.network.c
    perm = np.argsort(c)

    # Plot the true network
    plt.ion()
    plot_network(true_model.weight_model.A[np.ix_(perm, perm)],
                 true_model.weight_model.W[np.ix_(perm, perm)])
    plt.pause(0.001)


    # Make a new model for inference
    network_hypers = {'C': C, 'beta': 1.0/K}
    test_model = DiscreteTimeNetworkHawkesModelSpikeAndSlab(K=K, dt=dt, B=B,
                                                            network_hypers=network_hypers)
    # test_model.add_data(S)

    # Gibbs sample
    N_samples = 10
    samples = []
    lps = []
    for itr in xrange(N_samples):
        if itr % 5 == 0:
            print "Iteration: ", itr
        samples.append(copy.deepcopy(test_model.get_parameters()))

        lps.append(test_model.log_probability())

        # Resample the network only
        test_model.network.resample((true_model.weight_model.A,
                                     true_model.weight_model.W))

    plt.ioff()

    # Compute sample statistics for second half of samples
    c_samples       = np.array([c for _,_,_,_,c,_,_,_ in samples])

    print "True c: ", true_model.network.c
    print "Test c: ", c_samples[-10:, :]

    # Compute the adjusted mutual info score of the clusterings
    amis = []
    arss = []
    for c in c_samples:
        amis.append(adjusted_mutual_info_score(true_model.network.c, c))
        arss.append(adjusted_rand_score(true_model.network.c, c))

    plt.figure()
    plt.plot(np.arange(N_samples), amis, '-r')
    plt.plot(np.arange(N_samples), arss, '-b')
    plt.xlabel("Iteration")
    plt.ylabel("Clustering score")
    plt.show()