Beispiel #1
0
    def _build_model(self):
        """
        
        Build the crucial components for model training 
 
        
        """
        if self.is_loadmodel is False:
            _config = {
                'input_size': 768,
                'layer_hidden_sizes': self.layer_hidden_sizes,
                'num_layers': self.num_layers,
                'bias': self.bias,
                'dropout': self.dropout,
                'bidirectional': self.bidirectional,
                'batch_first': self.batch_first,
                'label_size': self.label_size
            }
            self.predictor = callPredictor(**_config).to(self.device)
            self._save_predictor_config(_config)

        if self.dataparallal:
            self.predictor = torch.nn.DataParallel(self.predictor)
        self.criterion = callLoss(task=self.task_type,
                                  loss_name=self.loss_name,
                                  aggregate=self.aggregate)
        self.optimizer = self._get_optimizer(self.optimizer_name)
Beispiel #2
0
    def _build_model(self):
        """
        
        Build the crucial components for model training 
 
        
        """
        if self.is_loadmodel is False:
            _config = {
                'input_channel': 768,
                'nhid': self.nhid,
                'n_level': self.n_level,
                'kernel_size': self.kernel_size,
                'hidden_size': self.hidden_size,
                'label_size': self.label_size
            }
            self.predictor = callPredictor(**_config).to(self.device)
            self._save_predictor_config(_config)

        if self.dataparallal:
            self.predictor = torch.nn.DataParallel(self.predictor)
        self.criterion = callLoss(task=self.task_type,
                                  loss_name=self.loss_name,
                                  aggregate=self.aggregate)
        self.optimizer = self._get_optimizer(self.optimizer_name)