Beispiel #1
0
def update(viewer):
    global V, F, T, W, slice_z, overlay
    plane = igl.eigen.MatrixXd([
        0, 0, 1,
        -((1 - slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())
    ])
    V_vis = igl.eigen.MatrixXd()
    F_vis = igl.eigen.MatrixXi()
    J = igl.eigen.MatrixXi()
    bary = igl.eigen.SparseMatrixd()
    igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary)
    W_vis = igl.eigen.MatrixXd()
    igl.slice(W, J, W_vis)
    C_vis = igl.eigen.MatrixXd()
    igl.parula(W_vis, False, C_vis)

    if overlay == 1:  # OVERLAY_INPUT
        append_mesh(C_vis, F_vis, V_vis, V, F,
                    igl.eigen.MatrixXd([[1., 0.894, 0.227]]))
    elif overlay == 2:  # OVERLAY_OUTPUT
        append_mesh(C_vis, F_vis, V_vis, V, F,
                    igl.eigen.MatrixXd([[0.8, 0.8, 0.8]]))

    viewer.data.clear()
    viewer.data.set_mesh(V_vis, F_vis)
    viewer.data.set_colors(C_vis)
    viewer.data.set_face_based(True)
Beispiel #2
0
def update_visualization(viewer):
    global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
    plane = igl.eigen.MatrixXd([
        0.0, 0.0, 1.0,
        -((1 - slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())
    ])
    V_vis = igl.eigen.MatrixXd()
    F_vis = igl.eigen.MatrixXi()

    # Extract triangle mesh slice through volume mesh and subdivide nasty triangles
    J = igl.eigen.MatrixXi()
    bary = igl.eigen.SparseMatrixd()
    igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary)
    max_l = 0.03
    while True:
        l = igl.eigen.MatrixXd()
        igl.edge_lengths(V_vis, F_vis, l)
        l /= (V_vis.colwiseMaxCoeff() - V_vis.colwiseMinCoeff()).norm()

        if l.maxCoeff() < max_l:
            break

        bad = l.rowwiseMaxCoeff() > max_l
        notbad = l.rowwiseMaxCoeff() <= max_l  # TODO replace by ~ operator
        F_vis_bad = igl.eigen.MatrixXi()
        F_vis_good = igl.eigen.MatrixXi()
        igl.slice_mask(F_vis, bad, 1, F_vis_bad)
        igl.slice_mask(F_vis, notbad, 1, F_vis_good)
        igl.upsample(V_vis, F_vis_bad)
        F_vis = igl.cat(1, F_vis_bad, F_vis_good)

    # Compute signed distance
    S_vis = igl.eigen.MatrixXd()
    I = igl.eigen.MatrixXi()
    N = igl.eigen.MatrixXd()
    C = igl.eigen.MatrixXd()

    # Bunny is a watertight mesh so use pseudonormal for signing
    igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP,
                                     S_vis, I, C, N)

    # push to [0,1] range
    S_vis = 0.5 * (S_vis / max_distance) + 0.5
    C_vis = igl.eigen.MatrixXd()
    # color without normalizing
    igl.parula(S_vis, False, C_vis)

    if overlay:
        append_mesh(C_vis, F_vis, V_vis, V, F,
                    igl.eigen.MatrixXd([[0.8, 0.8, 0.8]]))

    viewer.data.clear()
    viewer.data.set_mesh(V_vis, F_vis)
    viewer.data.set_colors(C_vis)
    viewer.core.lighting_factor = overlay
Beispiel #3
0
def update_visualization(viewer):
    global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
    plane = igl.eigen.MatrixXd([0.0, 0.0, 1.0, -((1 - slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())])
    V_vis = igl.eigen.MatrixXd()
    F_vis = igl.eigen.MatrixXi()

    # Extract triangle mesh slice through volume mesh and subdivide nasty triangles
    J = igl.eigen.MatrixXi()
    bary = igl.eigen.SparseMatrixd()
    igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary)
    max_l = 0.03
    while True:
        l = igl.eigen.MatrixXd()
        igl.edge_lengths(V_vis, F_vis, l)
        l /= (V_vis.colwiseMaxCoeff() - V_vis.colwiseMinCoeff()).norm()

        if l.maxCoeff() < max_l:
            break

        bad = l.rowwiseMaxCoeff() > max_l
        notbad = l.rowwiseMaxCoeff() <= max_l  # TODO replace by ~ operator
        F_vis_bad = igl.eigen.MatrixXi()
        F_vis_good = igl.eigen.MatrixXi()
        igl.slice_mask(F_vis, bad, 1, F_vis_bad)
        igl.slice_mask(F_vis, notbad, 1, F_vis_good)
        igl.upsample(V_vis, F_vis_bad)
        F_vis = igl.cat(1, F_vis_bad, F_vis_good)

    # Compute signed distance
    S_vis = igl.eigen.MatrixXd()
    I = igl.eigen.MatrixXi()
    N = igl.eigen.MatrixXd()
    C = igl.eigen.MatrixXd()

    # Bunny is a watertight mesh so use pseudonormal for signing
    igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP, S_vis, I, C, N)

    # push to [0,1] range
    S_vis = 0.5 * (S_vis / max_distance) + 0.5
    C_vis = igl.eigen.MatrixXd()
    # color without normalizing
    igl.parula(S_vis, False, C_vis)

    if overlay:
        append_mesh(C_vis, F_vis, V_vis, V, F, igl.eigen.MatrixXd([[0.8, 0.8, 0.8]]))

    viewer.data.clear()
    viewer.data.set_mesh(V_vis, F_vis)
    viewer.data.set_colors(C_vis)
    viewer.core.lighting_factor = overlay
def update(viewer):
    global V, F, T, W, slice_z, overlay
    plane = igl.eigen.MatrixXd([0, 0, 1, -((1 - slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())])
    V_vis = igl.eigen.MatrixXd()
    F_vis = igl.eigen.MatrixXi()
    J = igl.eigen.MatrixXi()
    bary = igl.eigen.SparseMatrixd()
    igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary)
    W_vis = igl.eigen.MatrixXd()
    igl.slice(W, J, W_vis)
    C_vis = igl.eigen.MatrixXd()
    igl.parula(W_vis, False, C_vis)

    if overlay == 1:  # OVERLAY_INPUT
        append_mesh(C_vis, F_vis, V_vis, V, F, igl.eigen.MatrixXd([[1., 0.894, 0.227]]))
    elif overlay == 2:  # OVERLAY_OUTPUT
        append_mesh(C_vis, F_vis, V_vis, V, F, igl.eigen.MatrixXd([[0.8, 0.8, 0.8]]))

    viewer.data.clear()
    viewer.data.set_mesh(V_vis, F_vis)
    viewer.data.set_colors(C_vis)
    viewer.data.set_face_based(True)
Beispiel #5
0
def update_visualization(viewer):
    global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
    plane = igl.eigen.MatrixXd([
        0.0, 0.0, 1.0,
        -((1 - slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())
    ])
    V_vis = igl.eigen.MatrixXd()
    F_vis = igl.eigen.MatrixXi()

    # Extract triangle mesh slice through volume mesh and subdivide nasty triangles
    J = igl.eigen.MatrixXi()
    bary = igl.eigen.SparseMatrixd()
    igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary)
    max_l = 0.03
    #    while True:
    #        l = igl.eigen.MatrixXd()
    #        igl.edge_lengths(V_vis, F_vis, l)
    #        l /= (V_vis.colwise().maxCoeff() - V_vis.colwise().minCoeff()).norm()
    #
    #        if l.maxCoeff() < max_l:
    #            break
    #
    #        bad = e2p(l.rowwiseMaxCoeff())
    #        bad = bad > max_l
    #        F_vis_bad = igl.eigen.MatrixXi()
    #        F_vis_good = igl.eigen.MatrixXi()
    #        igl::slice_mask(F_vis, bad, 1, F_vis_bad);
    #        igl::slice_mask(F_vis, (bad!=true).eval(), 1, F_vis_good);
    #        igl.upsample(V_vis, F_vis_bad)
    #        F_vis = igl.cat(1, F_vis_bad, F_vis_good)

    #    #Compute signed distance
    #    S_vis = igl.eigen.MatrixXd()
    #    I = igl.eigen.MatrixXi()
    #    N = igl.eigen.MatrixXd()
    #    C = igl.eigen.MatrixXd()

    #    # Bunny is a watertight mesh so use pseudonormal for signing
    #    igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP, S_vis, I, C, N)

    #    # push to [0,1] range
    #    S_vis.array() = 0.5*(S_vis.array()/max_distance)+0.5;
    #    C_vis = igl.eigen.MatrixXi()
    #    # color without normalizing
    #    igl.parula(S_vis, False, C_vis)

    #    const auto & append_mesh = [&C_vis,&F_vis,&V_vis](const Eigen::MatrixXd & V, const Eigen::MatrixXi & F, const RowVector3d & color)

    #    F_vis.conservativeResize(F_vis.rows() + F.rows(), 3)
    #    F_vis.bottomRows(F.rows()) = F.array() + V_vis.rows()
    #    V_vis.conservativeResize(V_vis.rows() + V.rows(), 3)
    #    V_vis.bottomRows(V.rows()) = V
    #    C_vis.conservativeResize(C_vis.rows() + V.rows(), 3)
    #    C_vis.bottomRows(V.rows()).rowwise() = color

    #    if overlay:
    #        append_mesh(V, F, RowVector3d(0.8,0.8,0.8))

    viewer.data.clear()
    viewer.data.set_mesh(V_vis, F_vis)
    #    viewer.data.set_colors(C_vis)
    viewer.core.lighting_factor = overlay
Beispiel #6
0
def update_visualization(viewer):
    global V, F, T, tree, FN, VN, EN, E, EMAP, max_distance, slice_z, overlay
    plane = igl.eigen.MatrixXd([0.0, 0.0, 1.0, -((1-slice_z) * V.col(2).minCoeff() + slice_z * V.col(2).maxCoeff())])
    V_vis = igl.eigen.MatrixXd()
    F_vis = igl.eigen.MatrixXi()

    # Extract triangle mesh slice through volume mesh and subdivide nasty triangles
    J = igl.eigen.MatrixXi()
    bary = igl.eigen.SparseMatrixd()
    igl.slice_tets(V, T, plane, V_vis, F_vis, J, bary)
    max_l = 0.03
#    while True:
#        l = igl.eigen.MatrixXd()
#        igl.edge_lengths(V_vis, F_vis, l)
#        l /= (V_vis.colwise().maxCoeff() - V_vis.colwise().minCoeff()).norm()
#        
#        if l.maxCoeff() < max_l:
#            break
#        
#        bad = e2p(l.rowwiseMaxCoeff())
#        bad = bad > max_l
#        F_vis_bad = igl.eigen.MatrixXi()
#        F_vis_good = igl.eigen.MatrixXi()
#        igl::slice_mask(F_vis, bad, 1, F_vis_bad);
#        igl::slice_mask(F_vis, (bad!=true).eval(), 1, F_vis_good);
#        igl.upsample(V_vis, F_vis_bad)
#        F_vis = igl.cat(1, F_vis_bad, F_vis_good)


#    #Compute signed distance
#    S_vis = igl.eigen.MatrixXd()
#    I = igl.eigen.MatrixXi()
#    N = igl.eigen.MatrixXd()
#    C = igl.eigen.MatrixXd()

#    # Bunny is a watertight mesh so use pseudonormal for signing
#    igl.signed_distance_pseudonormal(V_vis, V, F, tree, FN, VN, EN, EMAP, S_vis, I, C, N)

#    # push to [0,1] range
#    S_vis.array() = 0.5*(S_vis.array()/max_distance)+0.5;
#    C_vis = igl.eigen.MatrixXi()
#    # color without normalizing
#    igl.parula(S_vis, False, C_vis)


#    const auto & append_mesh = [&C_vis,&F_vis,&V_vis](const Eigen::MatrixXd & V, const Eigen::MatrixXi & F, const RowVector3d & color)

#    F_vis.conservativeResize(F_vis.rows() + F.rows(), 3)
#    F_vis.bottomRows(F.rows()) = F.array() + V_vis.rows()
#    V_vis.conservativeResize(V_vis.rows() + V.rows(), 3)
#    V_vis.bottomRows(V.rows()) = V
#    C_vis.conservativeResize(C_vis.rows() + V.rows(), 3)
#    C_vis.bottomRows(V.rows()).rowwise() = color

#    if overlay:
#        append_mesh(V, F, RowVector3d(0.8,0.8,0.8))

    viewer.data.clear()
    viewer.data.set_mesh(V_vis, F_vis)
#    viewer.data.set_colors(C_vis)
    viewer.core.lighting_factor = overlay