Beispiel #1
0
def apply_gradcam(img_path):
    original_img = cv2.imread(img_path)
    original_img = cv2.resize(original_img, (320, 240))
    image = preprocess_img(img_path)
    preds = model_predict(image)
    i = np.argmax(preds[0])

    # initialize our gradient class activation map and build the heatmap
    cam = GradCAM(TRAINED_MODEL, i)
    heatmap = cam.compute_heatmap(image)

    # resize the resulting heatmap to the original input image dimensions
    # and then overlay heatmap on top of the image
    heatmap = cv2.resize(heatmap,
                         (original_img.shape[1], original_img.shape[0]))
    heatmap_legend, heatmap, output = cam.overlay_heatmap(heatmap,
                                                          original_img,
                                                          alpha=0.2)

    white_strip = 255 * np.ones((255, 1, 3), np.uint8)
    white_strip = cv2.resize(white_strip, (original_img.shape[1], 20))

    output = np.vstack([heatmap_legend, white_strip, heatmap, output])
    return output
Beispiel #2
0
image = imagenet_utils.preprocess_input(image)

# use the network to make predictions on the input imag and find
# the class label index with the largest corresponding probability
preds = model.predict(image)
i = np.argmax(preds[0])

# decode the ImageNet predictions to obtain the human-readable label
decoded = imagenet_utils.decode_predictions(preds)
(imagenetID, label, prob) = decoded[0][0]
label = "{}: {:.2f}%".format(label, prob * 100)
print("[INFO] {}".format(label))

# initialize our gradient class activation map and build the heatmap
cam = GradCAM(model, i)
heatmap = cam.compute_heatmap(image)

# resize the resulting heatmap to the original input image dimensions
# and then overlay heatmap on top of the image
heatmap = cv2.resize(heatmap, (orig.shape[1], orig.shape[0]))
(heatmap, output) = cam.overlay_heatmap(heatmap, orig, alpha=0.5)

# draw the predicted label on the output image
cv2.rectangle(output, (0, 0), (340, 40), (0, 0, 0), -1)
cv2.putText(output, label, (10, 25), cv2.FONT_HERSHEY_SIMPLEX, 0.8,
            (255, 255, 255), 2)

# display the original image and resulting heatmap and output image
# to our screen
output = np.vstack([orig, heatmap, output])
output = imutils.resize(output, height=700)
Beispiel #3
0
    def heatmap(self):

        labels = {'0': 0, '1': 1}
        class_labels = ["0 - No Hemmorhage", "1 - Hemmorhage"]

        filename = QFileDialog.getOpenFileName()
        name = filename[0]
        from tensorflow.keras.preprocessing import image

        new_model = load_model("trainn_5.h5")

        keyboard = np.zeros((600, 1000, 3), np.uint8)
        image_path = name
        path = name

        test_img_load = load_img(image_path, target_size=(128, 128, 3))
        test_img = image.img_to_array(test_img_load)
        test_img = np.expand_dims(test_img, axis=0)
        test_img /= 255

        label_map_inv = {v: k for k, v in labels.items()}

        result = new_model.predict(test_img)

        prediction = result.argmax(axis=1)

        i = label_map_inv[int(prediction)]
        label = class_labels[(int(i))]

        image = load_img(path, target_size=(128, 128))
        image = img_to_array(image)
        image = np.expand_dims(image, axis=0)
        image = imagenet_utils.preprocess_input(image)

        orig = cv2.imread(path)
        resized = cv2.resize(orig, (128, 128))

        cam = GradCAM(new_model, int(i))
        heatmap = cam.compute_heatmap(test_img)

        heatmap = cv2.resize(heatmap, (orig.shape[1], orig.shape[0]))
        (heatmap, output) = cam.overlay_heatmap(heatmap, orig, alpha=0.3)

        #cv2.rectangle(output, (0, 0), (340, 40), (0, 0, 0), -1)
        #cv2.putText(output, "re", (10, 25), cv2.FONT_HERSHEY_SIMPLEX,
        #0.8, (255, 255, 255), 2)

        output = np.hstack([orig, output])
        keyboard = cv2.resize(keyboard, (output.shape[1], 100))

        key = np.vstack([keyboard, output])
        key = imutils.resize(key, height=500)
        if label == "0 - No Hemmorhage":
            color = (0, 255, 0)
        else:
            color = (0, 0, 255)

        cv2.putText(key, label, ((int(((key.shape[1]) / 2)) - 180), 40), 1, 2,
                    color, 2)

        cv2.imshow("Output", key)
        cv2.waitKey(0)
Beispiel #4
0
print(label)
print("res",result[0][int(i)])




image = load_img(path, target_size=(128, 128))
image = img_to_array(image)
image = np.expand_dims(image, axis=0)
image = imagenet_utils.preprocess_input(image)

orig = cv2.imread(path)
resized = cv2.resize(orig, (128, 128))

cam = GradCAM(new_model, int(i))
heatmap = cam.compute_heatmap(test_img)


heatmap = cv2.resize(heatmap, (orig.shape[1], orig.shape[0]))
(heatmap, output) = cam.overlay_heatmap(heatmap, orig, alpha=0.3)



output = np.hstack([orig, output])
output = imutils.resize(output, height=500)
print(orig.shape)
cv2.putText(output, label, (10, 40), 1, 2, (0, 255, 0), 2)
#cv2.putText(output, str(prediction), (10, 80), 1, 2, (0, 255, 0), 2)
cv2.imshow("Output", output)
cv2.imwrite("test_0.png",output)
cv2.waitKey(0)