Beispiel #1
0
    def test_modal(self):
        self.act_funcs = "eig_funcs"
        a2, a1, a0, alpha, beta = self.param
        controller = ut.get_parabolic_robin_backstepping_controller(state=self.x_i_at_l,
                                                                    approx_state=self.x_i_at_l,
                                                                    d_approx_state=self.xd_i_at_l,
                                                                    approx_target_state=self.x_ti_at_l,
                                                                    d_approx_target_state=self.xd_ti_at_l,
                                                                    integral_kernel_zz=self.int_kernel_zz(self.l),
                                                                    original_beta=self.beta_i,
                                                                    target_beta=self.beta_ti,
                                                                    trajectory=self.traj,
                                                                    scale=self.transform_i(-self.l))

        # determine (A,B) with modal-transfomation
        A = np.diag(np.real(self.eig_val))
        B = a2 * np.array([self.adjoint_eig_funcs[i](self.l) for i in range(self.n)])
        ss_modal = sim.StateSpace(self.act_funcs, A, B, input_handle=controller)

        # simulate
        self.t, self.q = sim.simulate_state_space(ss_modal, np.zeros((len(self.adjoint_eig_funcs))),
                                                  self.dt)

        eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t, self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(self.t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-2)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #2
0
    def setUp(self):

        self.l=1; self.T=1
        a2 = 1; a1 = 0; a0 = 6; self.alpha = 0.5; self.beta = 0.5
        self.param = [a2, a1, a0, self.alpha, self.beta]
        self.n_y = 80
        self.y, self.t = tr.gevrey_tanh(self.T, self.n_y, 1.1, 2)
Beispiel #3
0
    def test_fem(self):
        self.act_funcs = "fem_funcs"
        controller = ut.get_parabolic_robin_backstepping_controller(state=self.x_fem_i_at_l,
                                                                    approx_state=self.x_i_at_l,
                                                                    d_approx_state=self.xd_i_at_l,
                                                                    approx_target_state=self.x_ti_at_l,
                                                                    d_approx_target_state=self.xd_ti_at_l,
                                                                    integral_kernel_zz=self.int_kernel_zz(self.l),
                                                                    original_beta=self.beta_i,
                                                                    target_beta=self.beta_ti,
                                                                    trajectory=self.traj,
                                                                    scale=self.transform_i(-self.l))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form(self.act_funcs, self.act_funcs, controller, self.param,
                                                   self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        self.t, self.q = sim.simulate_state_space(ss_weak, np.zeros((len(self.fem_funcs))),
                                                  self.dt)

        eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t, self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(self.t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-3)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #4
0
    def setUp(self):

        self.l = 1
        self.T = 1
        a2 = 1
        a1 = 0
        a0 = 6
        self.alpha = 0.5
        self.beta = 0.5
        self.param = [a2, a1, a0, self.alpha, self.beta]
        self.n_y = 80
        self.y, self.t = tr.gevrey_tanh(self.T, self.n_y, 1.1, 2)
Beispiel #5
0
    def test_modal(self):
        self.act_funcs = "eig_funcs"
        a2, a1, a0, alpha, beta = self.param
        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz(self.l),
            original_beta=self.beta_i,
            target_beta=self.beta_ti,
            trajectory=self.traj,
            scale=self.transform_i(-self.l))

        # determine (A,B) with modal-transfomation
        A = np.diag(np.real(self.eig_val))
        B = a2 * np.array(
            [self.adjoint_eig_funcs[i](self.l) for i in range(self.n)])
        ss_modal = sim.StateSpace(self.act_funcs,
                                  A,
                                  B,
                                  input_handle=controller)

        # simulate
        self.t, self.q = sim.simulate_state_space(
            ss_modal, np.zeros((len(self.adjoint_eig_funcs))), self.dt)

        eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t,
                                            self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(self.t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-2)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #6
0
    def test_fem(self):
        self.act_funcs = "fem_funcs"
        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz(self.l),
            original_beta=self.beta_i,
            target_beta=self.beta_ti,
            trajectory=self.traj,
            scale=self.transform_i(-self.l))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form(self.act_funcs,
                                                   self.act_funcs, controller,
                                                   self.param, self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        self.t, self.q = sim.simulate_state_space(
            ss_weak, np.zeros((len(self.fem_funcs))), self.dt)

        eval_d = sim.evaluate_approximation(self.act_funcs, self.q, self.t,
                                            self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(self.t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-3)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #7
0
    def test_fem(self):

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 30
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)
        self.n = 12

        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        self.param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(self.param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # actuation_type by b which is close to b_desired on a k times subdivided spatial domain
        b_desired = self.l / 2
        k = 51  # = k1 + k2
        k1, k2, self.b = ut.split_domain(k, b_desired, self.l, mode='coprime')[0:3]
        M = np.linalg.inv(ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n"))

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate(self.param)
        self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i
        _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate(self.param_t)
        self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti

        # create (not normalized) eigenfunctions
        eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies(self.param, self.l, self.n)
        init_eig_funcs = np.array([ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds) for om in eig_freq])
        init_adjoint_eig_funcs = np.array(
            [ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds) for om in eig_freq])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in
                                 range(self.n)]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        self.adjoint_eig_funcs = np.array([f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions of the in-domain intermediate (_id) and the intermediate (_i) system
        eig_freq_i, eig_val_i = ef.compute_rad_robin_eigenfrequencies(self.param_i, self.l, self.n)
        self.assertTrue(all(np.isclose(eig_val_i, self.eig_val)))
        eig_funcs_id = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_i[i],
                                                                  self.param_i,
                                                                  self.dz.bounds,
                                                                  eig_funcs[i](0))
                                 for i in range(self.n)])
        eig_funcs_i = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_i[i],
                                                                 self.param_i,
                                                                 self.dz.bounds,
                                                                 eig_funcs[i](0) * eig_funcs_id[i](self.l) /
                                                                 eig_funcs_id[i](self.b))
                                for i in range(self.n)])

        # eigenfunctions from target system ("_ti")
        eig_freq_ti = np.sqrt((a0_ti - self.eig_val) / a2)
        eig_funcs_ti = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_ti[i],
                                                                  self.param_ti,
                                                                  self.dz.bounds,
                                                                  eig_funcs_i[i](0))
                                 for i in range(self.n)])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                                      self.dz.bounds,
                                                                      node_count=self.n)

        # register eigenfunctions
        # register_functions("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", self.adjoint_eig_funcs, overwrite=True)
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("eig_funcs_i", eig_funcs_i, overwrite=True)
        register_base("eig_funcs_ti", eig_funcs_ti, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_i = ph.FieldVariable("eig_funcs_i", weight_label="eig_funcs", location=self.l)
        d_field_variable_i = ph.SpatialDerivedFieldVariable("eig_funcs_i", 1, weight_label="eig_funcs", location=self.l)
        field_variable_ti = ph.FieldVariable("eig_funcs_ti", weight_label="eig_funcs", location=self.l)
        d_field_variable_ti = ph.SpatialDerivedFieldVariable("eig_funcs_ti", 1, weight_label="eig_funcs",
                                                             location=self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable)]
        self.x_i_at_l = [ph.ScalarTerm(field_variable_i)]
        self.xd_i_at_l = [ph.ScalarTerm(d_field_variable_i)]
        self.x_ti_at_l = [ph.ScalarTerm(field_variable_ti)]
        self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_ti)]

        # shift transformation
        shifted_fem_funcs_i = np.array(
            [ef.FiniteTransformFunction(func, M, self.b, self.l, scale_func=lambda z: np.exp(a1 / 2 / a2 * z))
             for func in self.fem_funcs])
        shifted_eig_funcs_id = np.array([ef.FiniteTransformFunction(func, M, self.b, self.l) for func in eig_funcs_id])
        register_base("sh_fem_funcs_i", shifted_fem_funcs_i, overwrite=True)
        register_base("sh_eig_funcs_id", shifted_eig_funcs_id, overwrite=True)
        sh_fem_field_variable_i = ph.FieldVariable("sh_fem_funcs_i", weight_label="fem_funcs", location=self.l)
        sh_field_variable_id = ph.FieldVariable("sh_eig_funcs_id", weight_label="eig_funcs", location=self.l)
        self.sh_x_fem_i_at_l = [ph.ScalarTerm(sh_fem_field_variable_i),
                                ph.ScalarTerm(field_variable_i),
                                ph.ScalarTerm(sh_field_variable_id, -1)]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + (a0_i - a0_ti) / 2 / a2 * z

        a2, a1, _, _, _ = self.param
        controller = ut.get_parabolic_robin_backstepping_controller(state=self.sh_x_fem_i_at_l,
                                                                    approx_state=self.x_i_at_l,
                                                                    d_approx_state=self.xd_i_at_l,
                                                                    approx_target_state=self.x_ti_at_l,
                                                                    d_approx_target_state=self.xd_ti_at_l,
                                                                    integral_kernel_zz=self.int_kernel_zz(self.l),
                                                                    original_beta=self.beta_i,
                                                                    target_beta=self.beta_ti,
                                                                    trajectory=self.traj,
                                                                    scale=np.exp(-a1 / 2 / a2 * self.b))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds,
                                                   self.b)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros((len(self.fem_funcs))), self.dt)

        # weights of the intermediate system
        mat = cr.calculate_base_transformation_matrix(self.fem_funcs, eig_funcs)
        q_i = np.zeros((q.shape[0], len(eig_funcs_i)))
        for i in range(q.shape[0]):
            q_i[i, :] = np.dot(q[i, :], np.transpose(mat))

        eval_i = sim.evaluate_approximation("eig_funcs_i", q_i, t, self.dz)
        x_0t = eval_i.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-2)

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
            win1 = vis.PgSurfacePlot(eval_i)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #8
0
    def test_it(self):
        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 10
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)

        self.n = 10

        # original system parameters
        a2 = 1.5
        a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0])
        a0_z = lambda z: 3
        alpha = -2
        beta = -3
        self.param = [a2, a1_z, a0_z, alpha, beta]

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]
        adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t)

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param, d_end=self.l)
        self.param_i = a2, 0, a0_i, alpha_i, beta_i
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(self.param_t)
        self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti

        # create (not normalized) target (_t) eigenfunctions
        eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies(self.param_t, self.l, self.n)
        init_eig_funcs_t = np.array([ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds)
                                     for om in eig_freq_t])
        init_adjoint_eig_funcs_t = np.array([ef.SecondOrderRobinEigenfunction(om, adjoint_param_t, self.dz.bounds)
                                             for om in eig_freq_t])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs_t = [cr.normalize_function(init_eig_funcs_t[i], init_adjoint_eig_funcs_t[i])
                                   for i in range(self.n)]
        eig_funcs_t = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t])
        self.adjoint_eig_funcs_t = np.array([f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t])

        # # transformed original eigenfunctions
        self.eig_funcs = np.array([ef.TransformedSecondOrderEigenfunction(self.eig_val_t[i],
                                                                          [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0),
                                                                           0, 0],
                                                                          [a2, a1_z, a0_z],
                                                                          np.linspace(0, self.l, 1e4))
                                   for i in range(self.n)])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                                      self.dz.bounds,
                                                                      node_count=self.n)

        # register functions
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)
        register_base("adjoint_eig_funcs_t", self.adjoint_eig_funcs_t, overwrite=True)
        register_base("eig_funcs", self.eig_funcs, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti, bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_t = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l)
        d_field_variable_t = ph.SpatialDerivedFieldVariable("eig_funcs_t", 1, weight_label="eig_funcs", location=self.l)
        field_variable = ph.FieldVariable("eig_funcs", location=self.l)
        d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l)
        # intermediate (_i) and target intermediate (_ti) transformations by z=l

        #  x_i  = x   * transform_i_at_l
        self.transform_i_at_l = np.exp(integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x  = x_i   * inv_transform_i_at_l
        self.inv_transform_i_at_l = np.exp(-integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x_ti = x_t * transform_ti_at_l
        self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable, self.transform_i_at_l)]
        self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)]
        self.xd_i_at_l = [ph.ScalarTerm(d_field_variable, self.transform_i_at_l),
                          ph.ScalarTerm(field_variable, self.transform_i_at_l * a1_z(self.l) / 2 / a2)]
        self.x_ti_at_l = [ph.ScalarTerm(field_variable_t, self.transform_ti_at_l)]
        self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l),
                           ph.ScalarTerm(field_variable_t, self.transform_ti_at_l * a1_t / 2 / a2)]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad(lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0]

        controller = ut.get_parabolic_robin_backstepping_controller(state=self.x_fem_i_at_l,
                                                                    approx_state=self.x_i_at_l,
                                                                    d_approx_state=self.xd_i_at_l,
                                                                    approx_target_state=self.x_ti_at_l,
                                                                    d_approx_target_state=self.xd_ti_at_l,
                                                                    integral_kernel_zz=self.int_kernel_zz,
                                                                    original_beta=beta_i,
                                                                    target_beta=beta_ti,
                                                                    trajectory=self.traj,
                                                                    scale=self.inv_transform_i_at_l)

        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs", controller, self.param, self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros((len(self.fem_funcs))), self.dt)
        eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #9
0
    def test_it(self):
        # original system parameters
        a2 = 1.5;
        a1 = 2.5;
        a0 = 28;
        alpha = -2;
        beta = -3
        param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)

        # target system parameters (controller parameters)
        a1_t = -5;
        a0_t = -25;
        alpha_t = 3;
        beta_t = 2
        # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta
        param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param)
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(param_t)

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        self.l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)
        n = 10

        # create (not normalized) eigenfunctions
        eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(param, self.l, n)
        init_eig_funcs = np.array([ef.SecondOrderRobinEigenfunction(om, param, dz.bounds) for om in eig_freq])
        init_adjoint_eig_funcs = np.array([ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds)
                                           for om in eig_freq])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i]) for i in range(n)]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        adjoint_eig_funcs = np.array([f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions from target system ("_t")
        eig_freq_t = np.sqrt(-a1_t ** 2 / 4 / a2 ** 2 + (a0_t - eig_val) / a2)
        eig_funcs_t = np.array([ef.SecondOrderRobinEigenfunction(eig_freq_t[i],
                                                                 param_t, dz.bounds).scale(eig_funcs[i](0))
                                for i in range(n)])

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, self.l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # controller initialization
        x_at_l = ph.FieldVariable("eig_funcs", location=self.l)
        xd_at_l = ph.SpatialDerivedFieldVariable("eig_funcs", 1, location=self.l)
        x_t_at_l = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=self.l)
        xd_t_at_l = ph.SpatialDerivedFieldVariable("eig_funcs_t", 1, weight_label="eig_funcs", location=self.l)
        combined_transform = lambda z: np.exp((a1_t - a1) / 2 / a2 * z)
        int_kernel_zz = lambda z: alpha_ti - alpha_i + (a0_i - a0_ti) / 2 / a2 * z
        controller = ct.Controller(
            ct.ControlLaw([ph.ScalarTerm(x_at_l, (beta_i - beta_ti - int_kernel_zz(self.l))),
                           ph.ScalarTerm(x_t_at_l, -beta_ti * combined_transform(self.l)),
                           ph.ScalarTerm(x_at_l, beta_ti),
                           ph.ScalarTerm(xd_t_at_l, -combined_transform(self.l)),
                           ph.ScalarTerm(x_t_at_l, -a1_t / 2 / a2 * combined_transform(self.l)),
                           ph.ScalarTerm(xd_at_l, 1),
                           ph.ScalarTerm(x_at_l, a1 / 2 / a2 + int_kernel_zz(self.l))
                           ]))

        # init trajectory
        traj = tr.RadTrajectory(self.l, T, param_t, bound_cond_type, actuation_type)
        traj.scale = combined_transform(self.l)

        # input with feedback
        control_law = sim.SimulationInputSum([traj, controller])
        # control_law = sim.simInputSum([traj])

        # determine (A,B) with modal-transformation
        A = np.diag(np.real(eig_val))
        B = a2 * np.array([adjoint_eig_funcs[i](self.l) for i in range(len(eig_freq))])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

        # simulate
        t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)

        eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #10
0
    def test_it(self):
        # original system parameters
        a2 = 1
        a1 = 0  # attention: only a2 = 1., a1 =0 supported in this test case
        a0 = 0
        param = [a2, a1, a0, None, None]

        # target system parameters (controller parameters)
        a1_t = 0
        a0_t = 0  # attention: only a2 = 1., a1 =0 and a0 =0 supported in this test case
        param_t = [a2, a1_t, a0_t, None, None]

        # system/simulation parameters
        actuation_type = 'dirichlet'
        bound_cond_type = 'dirichlet'

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)

        n = 10

        # eigenvalues /-functions original system
        eig_freq = np.array([(i + 1) * np.pi / l for i in range(n)])
        eig_values = a0 - a2 * eig_freq ** 2 - a1 ** 2 / 4. / a2
        norm_fac = np.ones(eig_freq.shape) * np.sqrt(2)
        eig_funcs = np.asarray([ef.SecondOrderDirichletEigenfunction(eig_freq[i], param, dz.bounds, norm_fac[i])
                                for i in range(n)])
        register_base("eig_funcs", eig_funcs, overwrite=True)

        # eigenfunctions target system
        eig_freq_t = np.sqrt(-eig_values.astype(complex))
        norm_fac_t = norm_fac * eig_freq / eig_freq_t
        eig_funcs_t = np.asarray([ef.SecondOrderDirichletEigenfunction(eig_freq_t[i], param_t, dz.bounds, norm_fac_t[i])
                                  for i in range(n)])
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, eig_funcs)

        # init trajectory / input of target system
        traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type)

        # init controller
        x_at_1 = ph.FieldVariable("eig_funcs", location=1)
        xt_at_1 = ph.FieldVariable("eig_funcs_t", weight_label="eig_funcs", location=1)
        controller = ct.Controller(ct.ControlLaw([ph.ScalarTerm(x_at_1, 1), ph.ScalarTerm(xt_at_1, -1)]))

        # input with feedback
        control_law = sim.SimulationInputSum([traj, controller])

        # determine (A,B) with modal-transfomation
        A = np.diag(eig_values)
        B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)])
        ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

        # simulate
        t, q = sim.simulate_state_space(ss, initial_weights, dt)

        eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired) ** 2), 0.5)

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #11
0
initial_weights = cr.project_on_base(start_state, eig_funcs)

# init trajectory
traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type)

# input with feedback
control_law = sim.SimulationInputSum([traj, controller])

# determine (A,B) with modal-transfomation
A = np.diag(eig_values)
B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)])
ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

# evaluate desired output data
z_d = np.linspace(0, l, len(spatial_domain))
y_d, t_d = tr.gevrey_tanh(T, 80)
C = tr.coefficient_recursion(np.zeros(y_d.shape), y_d, param)
x_l = tr.power_series(z_d, t_d, C)
evald_traj = vis.EvalData([t_d, z_d], x_l, name="x(z,t) desired")

# simulate
t, q = sim.simulate_state_space(ss, initial_weights, temporal_domain)

# pyqtgraph visualization
evald_x = sim.evaluate_approximation("eig_funcs", q, t, spatial_domain,
                                     name="x(z,t) with x(z,0)=" + str(init_profile))
win1 = vis.PgAnimatedPlot([evald_x, evald_traj], title="animation", dt=temporal_domain.step)
win2 = vis.PgSurfacePlot([evald_x], title=evald_x.name, grid_height=1)
win3 = vis.PgSurfacePlot([evald_traj], title=evald_traj.name, grid_height=1)
pg.QtGui.QApplication.instance().exec_()
Beispiel #12
0
    def test_fem(self):

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 30
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)
        self.n = 12

        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        self.param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(self.param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # actuation_type by b which is close to b_desired on a k times subdivided spatial domain
        b_desired = self.l / 2
        k = 51  # = k1 + k2
        k1, k2, self.b = ut.split_domain(k, b_desired, self.l,
                                         mode='coprime')[0:3]
        M = np.linalg.inv(
            ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n"))

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, self.alpha_i, self.beta_i = ef.transform2intermediate(
            self.param)
        self.param_i = a2, 0, a0_i, self.alpha_i, self.beta_i
        _, _, a0_ti, self.alpha_ti, self.beta_ti = ef.transform2intermediate(
            self.param_t)
        self.param_ti = a2, 0, a0_ti, self.alpha_ti, self.beta_ti

        # create (not normalized) eigenfunctions
        eig_freq, self.eig_val = ef.compute_rad_robin_eigenfrequencies(
            self.param, self.l, self.n)
        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, self.param, self.dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, self.dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(self.n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        self.adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions of the in-domain intermediate (_id) and the intermediate (_i) system
        eig_freq_i, eig_val_i = ef.compute_rad_robin_eigenfrequencies(
            self.param_i, self.l, self.n)
        self.assertTrue(all(np.isclose(eig_val_i, self.eig_val)))
        eig_funcs_id = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_i[i], self.param_i,
                                             self.dz.bounds, eig_funcs[i](0))
            for i in range(self.n)
        ])
        eig_funcs_i = np.array([
            ef.SecondOrderRobinEigenfunction(
                eig_freq_i[i], self.param_i, self.dz.bounds, eig_funcs[i](0) *
                eig_funcs_id[i](self.l) / eig_funcs_id[i](self.b))
            for i in range(self.n)
        ])

        # eigenfunctions from target system ("_ti")
        eig_freq_ti = np.sqrt((a0_ti - self.eig_val) / a2)
        eig_funcs_ti = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_ti[i], self.param_ti,
                                             self.dz.bounds, eig_funcs_i[i](0))
            for i in range(self.n)
        ])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                 self.dz.bounds,
                                                 node_count=self.n)

        # register eigenfunctions
        # register_functions("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs",
                      self.adjoint_eig_funcs,
                      overwrite=True)
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("eig_funcs_i", eig_funcs_i, overwrite=True)
        register_base("eig_funcs_ti", eig_funcs_ti, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti,
                                     bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_i = ph.FieldVariable("eig_funcs_i",
                                            weight_label="eig_funcs",
                                            location=self.l)
        d_field_variable_i = ph.SpatialDerivedFieldVariable(
            "eig_funcs_i", 1, weight_label="eig_funcs", location=self.l)
        field_variable_ti = ph.FieldVariable("eig_funcs_ti",
                                             weight_label="eig_funcs",
                                             location=self.l)
        d_field_variable_ti = ph.SpatialDerivedFieldVariable(
            "eig_funcs_ti", 1, weight_label="eig_funcs", location=self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [ph.ScalarTerm(fem_field_variable)]
        self.x_i_at_l = [ph.ScalarTerm(field_variable_i)]
        self.xd_i_at_l = [ph.ScalarTerm(d_field_variable_i)]
        self.x_ti_at_l = [ph.ScalarTerm(field_variable_ti)]
        self.xd_ti_at_l = [ph.ScalarTerm(d_field_variable_ti)]

        # shift transformation
        shifted_fem_funcs_i = np.array([
            ef.FiniteTransformFunction(
                func,
                M,
                self.b,
                self.l,
                scale_func=lambda z: np.exp(a1 / 2 / a2 * z))
            for func in self.fem_funcs
        ])
        shifted_eig_funcs_id = np.array([
            ef.FiniteTransformFunction(func, M, self.b, self.l)
            for func in eig_funcs_id
        ])
        register_base("sh_fem_funcs_i", shifted_fem_funcs_i, overwrite=True)
        register_base("sh_eig_funcs_id", shifted_eig_funcs_id, overwrite=True)
        sh_fem_field_variable_i = ph.FieldVariable("sh_fem_funcs_i",
                                                   weight_label="fem_funcs",
                                                   location=self.l)
        sh_field_variable_id = ph.FieldVariable("sh_eig_funcs_id",
                                                weight_label="eig_funcs",
                                                location=self.l)
        self.sh_x_fem_i_at_l = [
            ph.ScalarTerm(sh_fem_field_variable_i),
            ph.ScalarTerm(field_variable_i),
            ph.ScalarTerm(sh_field_variable_id, -1)
        ]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = lambda z: self.alpha_ti - self.alpha_i + (
            a0_i - a0_ti) / 2 / a2 * z

        a2, a1, _, _, _ = self.param
        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.sh_x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz(self.l),
            original_beta=self.beta_i,
            target_beta=self.beta_ti,
            trajectory=self.traj,
            scale=np.exp(-a1 / 2 / a2 * self.b))

        # determine (A,B) with modal-transfomation
        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs",
                                                   controller, self.param,
                                                   self.dz.bounds, self.b)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros(
            (len(self.fem_funcs))), self.dt)

        # weights of the intermediate system
        mat = cr.calculate_base_transformation_matrix(self.fem_funcs,
                                                      eig_funcs)
        q_i = np.zeros((q.shape[0], len(eig_funcs_i)))
        for i in range(q.shape[0]):
            q_i[i, :] = np.dot(q[i, :], np.transpose(mat))

        eval_i = sim.evaluate_approximation("eig_funcs_i", q_i, t, self.dz)
        x_0t = eval_i.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-2)

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
            win1 = vis.PgSurfacePlot(eval_i)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #13
0
    def test_it(self):
        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'

        self.l = 1.
        spatial_disc = 10
        self.dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        self.T = 1.
        temporal_disc = 1e2
        self.dt = sim.Domain(bounds=(0, self.T), num=temporal_disc)

        self.n = 10

        # original system parameters
        a2 = 1.5
        a1_z = cr.Function(lambda z: 1, derivative_handles=[lambda z: 0])
        a0_z = lambda z: 3
        alpha = -2
        beta = -3
        self.param = [a2, a1_z, a0_z, alpha, beta]

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        self.param_t = [a2, a1_t, a0_t, alpha_t, beta_t]
        adjoint_param_t = ef.get_adjoint_rad_evp_param(self.param_t)

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(self.param,
                                                                d_end=self.l)
        self.param_i = a2, 0, a0_i, alpha_i, beta_i
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(
            self.param_t)
        self.param_ti = a2, 0, a0_ti, alpha_ti, beta_ti

        # create (not normalized) target (_t) eigenfunctions
        eig_freq_t, self.eig_val_t = ef.compute_rad_robin_eigenfrequencies(
            self.param_t, self.l, self.n)
        init_eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(om, self.param_t, self.dz.bounds)
            for om in eig_freq_t
        ])
        init_adjoint_eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param_t,
                                             self.dz.bounds)
            for om in eig_freq_t
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs_t = [
            cr.normalize_function(init_eig_funcs_t[i],
                                  init_adjoint_eig_funcs_t[i])
            for i in range(self.n)
        ]
        eig_funcs_t = np.array(
            [f_tuple[0] for f_tuple in adjoint_and_eig_funcs_t])
        self.adjoint_eig_funcs_t = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs_t])

        # # transformed original eigenfunctions
        self.eig_funcs = np.array([
            ef.TransformedSecondOrderEigenfunction(
                self.eig_val_t[i],
                [eig_funcs_t[i](0), alpha * eig_funcs_t[i](0), 0, 0],
                [a2, a1_z, a0_z], np.linspace(0, self.l, 1e4))
            for i in range(self.n)
        ])

        # create testfunctions
        nodes, self.fem_funcs = sf.cure_interval(sf.LagrangeFirstOrder,
                                                 self.dz.bounds,
                                                 node_count=self.n)

        # register functions
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)
        register_base("adjoint_eig_funcs_t",
                      self.adjoint_eig_funcs_t,
                      overwrite=True)
        register_base("eig_funcs", self.eig_funcs, overwrite=True)
        register_base("fem_funcs", self.fem_funcs, overwrite=True)

        # init trajectory
        self.traj = tr.RadTrajectory(self.l, self.T, self.param_ti,
                                     bound_cond_type, actuation_type)

        # original () and target (_t) field variable
        fem_field_variable = ph.FieldVariable("fem_funcs", location=self.l)
        field_variable_t = ph.FieldVariable("eig_funcs_t",
                                            weight_label="eig_funcs",
                                            location=self.l)
        d_field_variable_t = ph.SpatialDerivedFieldVariable(
            "eig_funcs_t", 1, weight_label="eig_funcs", location=self.l)
        field_variable = ph.FieldVariable("eig_funcs", location=self.l)
        d_field_variable = ph.SpatialDerivedFieldVariable("eig_funcs",
                                                          1,
                                                          location=self.l)
        # intermediate (_i) and target intermediate (_ti) transformations by z=l

        #  x_i  = x   * transform_i_at_l
        self.transform_i_at_l = np.exp(
            integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x  = x_i   * inv_transform_i_at_l
        self.inv_transform_i_at_l = np.exp(
            -integrate.quad(lambda z: a1_z(z) / 2 / a2, 0, self.l)[0])

        # x_ti = x_t * transform_ti_at_l
        self.transform_ti_at_l = np.exp(a1_t / 2 / a2 * self.l)

        # intermediate (_i) and target intermediate (_ti) field variable (list of scalar terms = sum of scalar terms)
        self.x_fem_i_at_l = [
            ph.ScalarTerm(fem_field_variable, self.transform_i_at_l)
        ]
        self.x_i_at_l = [ph.ScalarTerm(field_variable, self.transform_i_at_l)]
        self.xd_i_at_l = [
            ph.ScalarTerm(d_field_variable, self.transform_i_at_l),
            ph.ScalarTerm(field_variable,
                          self.transform_i_at_l * a1_z(self.l) / 2 / a2)
        ]
        self.x_ti_at_l = [
            ph.ScalarTerm(field_variable_t, self.transform_ti_at_l)
        ]
        self.xd_ti_at_l = [
            ph.ScalarTerm(d_field_variable_t, self.transform_ti_at_l),
            ph.ScalarTerm(field_variable_t,
                          self.transform_ti_at_l * a1_t / 2 / a2)
        ]

        # discontinuous operator (Kx)(t) = int_kernel_zz(l)*x(l,t)
        self.int_kernel_zz = alpha_ti - alpha_i + integrate.quad(
            lambda z: (a0_i(z) - a0_ti) / 2 / a2, 0, self.l)[0]

        controller = ut.get_parabolic_robin_backstepping_controller(
            state=self.x_fem_i_at_l,
            approx_state=self.x_i_at_l,
            d_approx_state=self.xd_i_at_l,
            approx_target_state=self.x_ti_at_l,
            d_approx_target_state=self.xd_ti_at_l,
            integral_kernel_zz=self.int_kernel_zz,
            original_beta=beta_i,
            target_beta=beta_ti,
            trajectory=self.traj,
            scale=self.inv_transform_i_at_l)

        rad_pde = ut.get_parabolic_robin_weak_form("fem_funcs", "fem_funcs",
                                                   controller, self.param,
                                                   self.dz.bounds)
        cf = sim.parse_weak_formulation(rad_pde)
        ss_weak = cf.convert_to_state_space()

        # simulate
        t, q = sim.simulate_state_space(ss_weak, np.zeros(
            (len(self.fem_funcs))), self.dt)
        eval_d = sim.evaluate_approximation("fem_funcs", q, t, self.dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(self.T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #14
0
    def test_it(self):
        # original system parameters
        a2 = 1.5
        a1 = 2.5
        a0 = 28
        alpha = -2
        beta = -3
        param = [a2, a1, a0, alpha, beta]
        adjoint_param = ef.get_adjoint_rad_evp_param(param)

        # target system parameters (controller parameters)
        a1_t = -5
        a0_t = -25
        alpha_t = 3
        beta_t = 2
        # a1_t = a1; a0_t = a0; alpha_t = alpha; beta_t = beta
        param_t = [a2, a1_t, a0_t, alpha_t, beta_t]

        # original intermediate ("_i") and traget intermediate ("_ti") system parameters
        _, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param)
        _, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(param_t)

        # system/simulation parameters
        actuation_type = 'robin'
        bound_cond_type = 'robin'
        self.l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, self.l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)
        n = 10

        # create (not normalized) eigenfunctions
        eig_freq, eig_val = ef.compute_rad_robin_eigenfrequencies(
            param, self.l, n)
        init_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, param, dz.bounds)
            for om in eig_freq
        ])
        init_adjoint_eig_funcs = np.array([
            ef.SecondOrderRobinEigenfunction(om, adjoint_param, dz.bounds)
            for om in eig_freq
        ])

        # normalize eigenfunctions and adjoint eigenfunctions
        adjoint_and_eig_funcs = [
            cr.normalize_function(init_eig_funcs[i], init_adjoint_eig_funcs[i])
            for i in range(n)
        ]
        eig_funcs = np.array([f_tuple[0] for f_tuple in adjoint_and_eig_funcs])
        adjoint_eig_funcs = np.array(
            [f_tuple[1] for f_tuple in adjoint_and_eig_funcs])

        # eigenfunctions from target system ("_t")
        eig_freq_t = np.sqrt(-a1_t**2 / 4 / a2**2 + (a0_t - eig_val) / a2)
        eig_funcs_t = np.array([
            ef.SecondOrderRobinEigenfunction(eig_freq_t[i], param_t,
                                             dz.bounds).scale(eig_funcs[i](0))
            for i in range(n)
        ])

        # register eigenfunctions
        register_base("eig_funcs", eig_funcs, overwrite=True)
        register_base("adjoint_eig_funcs", adjoint_eig_funcs, overwrite=True)
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, self.l))
        initial_weights = cr.project_on_base(start_state, adjoint_eig_funcs)

        # controller initialization
        x_at_l = ph.FieldVariable("eig_funcs", location=self.l)
        xd_at_l = ph.SpatialDerivedFieldVariable("eig_funcs",
                                                 1,
                                                 location=self.l)
        x_t_at_l = ph.FieldVariable("eig_funcs_t",
                                    weight_label="eig_funcs",
                                    location=self.l)
        xd_t_at_l = ph.SpatialDerivedFieldVariable("eig_funcs_t",
                                                   1,
                                                   weight_label="eig_funcs",
                                                   location=self.l)
        combined_transform = lambda z: np.exp((a1_t - a1) / 2 / a2 * z)
        int_kernel_zz = lambda z: alpha_ti - alpha_i + (a0_i - a0_ti
                                                        ) / 2 / a2 * z
        controller = ct.Controller(
            ct.ControlLaw([
                ph.ScalarTerm(x_at_l,
                              (beta_i - beta_ti - int_kernel_zz(self.l))),
                ph.ScalarTerm(x_t_at_l, -beta_ti * combined_transform(self.l)),
                ph.ScalarTerm(x_at_l, beta_ti),
                ph.ScalarTerm(xd_t_at_l, -combined_transform(self.l)),
                ph.ScalarTerm(x_t_at_l,
                              -a1_t / 2 / a2 * combined_transform(self.l)),
                ph.ScalarTerm(xd_at_l, 1),
                ph.ScalarTerm(x_at_l, a1 / 2 / a2 + int_kernel_zz(self.l))
            ]))

        # init trajectory
        traj = tr.RadTrajectory(self.l, T, param_t, bound_cond_type,
                                actuation_type)
        traj.scale = combined_transform(self.l)

        # input with feedback
        control_law = sim.SimulationInputSum([traj, controller])
        # control_law = sim.simInputSum([traj])

        # determine (A,B) with modal-transformation
        A = np.diag(np.real(eig_val))
        B = a2 * np.array(
            [adjoint_eig_funcs[i](self.l) for i in range(len(eig_freq))])
        ss_modal = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

        # simulate
        t, q = sim.simulate_state_space(ss_modal, initial_weights, dt)

        eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 1e-4)

        # display results
        if show_plots:
            win1 = vis.PgAnimatedPlot([eval_d], title="Test")
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
Beispiel #15
0
    def test_it(self):
        # original system parameters
        a2 = 1
        a1 = 0  # attention: only a2 = 1., a1 =0 supported in this test case
        a0 = 0
        param = [a2, a1, a0, None, None]

        # target system parameters (controller parameters)
        a1_t = 0
        a0_t = 0  # attention: only a2 = 1., a1 =0 and a0 =0 supported in this test case
        param_t = [a2, a1_t, a0_t, None, None]

        # system/simulation parameters
        actuation_type = 'dirichlet'
        bound_cond_type = 'dirichlet'

        l = 1.
        spatial_disc = 10
        dz = sim.Domain(bounds=(0, l), num=spatial_disc)

        T = 1.
        temporal_disc = 1e2
        dt = sim.Domain(bounds=(0, T), num=temporal_disc)

        n = 10

        # eigenvalues /-functions original system
        eig_freq = np.array([(i + 1) * np.pi / l for i in range(n)])
        eig_values = a0 - a2 * eig_freq**2 - a1**2 / 4. / a2
        norm_fac = np.ones(eig_freq.shape) * np.sqrt(2)
        eig_funcs = np.asarray([
            ef.SecondOrderDirichletEigenfunction(eig_freq[i], param, dz.bounds,
                                                 norm_fac[i]) for i in range(n)
        ])
        register_base("eig_funcs", eig_funcs, overwrite=True)

        # eigenfunctions target system
        eig_freq_t = np.sqrt(-eig_values.astype(complex))
        norm_fac_t = norm_fac * eig_freq / eig_freq_t
        eig_funcs_t = np.asarray([
            ef.SecondOrderDirichletEigenfunction(eig_freq_t[i], param_t,
                                                 dz.bounds, norm_fac_t[i])
            for i in range(n)
        ])
        register_base("eig_funcs_t", eig_funcs_t, overwrite=True)

        # derive initial field variable x(z,0) and weights
        start_state = cr.Function(lambda z: 0., domain=(0, l))
        initial_weights = cr.project_on_base(start_state, eig_funcs)

        # init trajectory / input of target system
        traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type)

        # init controller
        x_at_1 = ph.FieldVariable("eig_funcs", location=1)
        xt_at_1 = ph.FieldVariable("eig_funcs_t",
                                   weight_label="eig_funcs",
                                   location=1)
        controller = ct.Controller(
            ct.ControlLaw(
                [ph.ScalarTerm(x_at_1, 1),
                 ph.ScalarTerm(xt_at_1, -1)]))

        # input with feedback
        control_law = sim.SimulationInputSum([traj, controller])

        # determine (A,B) with modal-transfomation
        A = np.diag(eig_values)
        B = -a2 * np.array([eig_funcs[i].derive()(l) for i in range(n)])
        ss = sim.StateSpace("eig_funcs", A, B, input_handle=control_law)

        # simulate
        t, q = sim.simulate_state_space(ss, initial_weights, dt)

        eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
        x_0t = eval_d.output_data[:, 0]
        yc, tc = tr.gevrey_tanh(T, 1)
        x_0t_desired = np.interp(t, tc, yc[0, :])
        self.assertLess(np.average((x_0t - x_0t_desired)**2), 0.5)

        # display results
        if show_plots:
            eval_d = sim.evaluate_approximation("eig_funcs", q, t, dz)
            win2 = vis.PgSurfacePlot(eval_d)
            app.exec_()
k = 5  # = k1 + k2
k1, k2, b = ut.split_domain(k, b_desired, l, mode='coprime')[0:3]
M = np.linalg.inv(ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n"))

# original intermediate ("_i") and target intermediate ("_ti") system parameters
_, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param)
param_i = a2, 0, a0_i, alpha_i, beta_i
_, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(param_t)
param_ti = a2, 0, a0_ti, alpha_ti, beta_ti

# COMPUTE DESIRED FIELDVARIABLE
# THE NAMING OF THE POWER SERIES COEFFICIENTS IS BASED ON THE PUBLICATION:
#      - WANG; WOITTENNEK:BACKSTEPPING-METHODE FUER PARABOLISCHE SYSTEM MIT PUNKTFOERMIGEM INNEREN EINGRIFF
# compute input u_i of the boundary-controlled intermediate (_i) system with n_y/2 temporal derivatives
n_y = 80
y, t_x = tr.gevrey_tanh(T, n_y, 1.1, 2)
B = tr.coefficient_recursion(y, alpha_i * y, param_i)
x_i_at_l = tr.temporal_derived_power_series(l,
                                            B,
                                            int(n_y / 2) - 1,
                                            n_y,
                                            spatial_der_order=0)
dx_i_at_l = tr.temporal_derived_power_series(l,
                                             B,
                                             int(n_y / 2) - 1,
                                             n_y,
                                             spatial_der_order=1)
u_i = dx_i_at_l + beta_i * x_i_at_l

# compute coefficients C, D and E for the power series
E = tr.coefficient_recursion(y, beta_i * y, param_i)
Beispiel #17
0
k = 5  # = k1 + k2
k1, k2, b = ut.split_domain(k, b_desired, l, mode='coprime')[0:3]
M = np.linalg.inv(ut.get_inn_domain_transformation_matrix(k1, k2, mode="2n"))

# original intermediate ("_i") and target intermediate ("_ti") system parameters
_, _, a0_i, alpha_i, beta_i = ef.transform2intermediate(param)
param_i = a2, 0, a0_i, alpha_i, beta_i
_, _, a0_ti, alpha_ti, beta_ti = ef.transform2intermediate(param_t)
param_ti = a2, 0, a0_ti, alpha_ti, beta_ti

# COMPUTE DESIRED FIELDVARIABLE
# THE NAMING OF THE POWER SERIES COEFFICIENTS IS BASED ON THE PUBLICATION:
#      - WANG; WOITTENNEK:BACKSTEPPING-METHODE FUER PARABOLISCHE SYSTEM MIT PUNKTFOERMIGEM INNEREN EINGRIFF
# compute input u_i of the boundary-controlled intermediate (_i) system with n_y/2 temporal derivatives
n_y = 80
y, t_x = tr.gevrey_tanh(T, n_y, 1.1, 2)
B = tr.coefficient_recursion(y, alpha_i * y, param_i)
x_i_at_l = tr.temporal_derived_power_series(l, B, int(n_y / 2) - 1, n_y, spatial_der_order=0)
dx_i_at_l = tr.temporal_derived_power_series(l, B, int(n_y / 2) - 1, n_y, spatial_der_order=1)
u_i = dx_i_at_l + beta_i * x_i_at_l

# compute coefficients C, D and E for the power series
E = tr.coefficient_recursion(y, beta_i * y, param_i)
q = tr.temporal_derived_power_series(l - b, E, int(n_y / 2) - 1, n_y)
C = tr.coefficient_recursion(q, alpha_i * q, param_i)
D = tr.coefficient_recursion(np.zeros(u_i.shape), u_i, param_i)

# compute power series for the desired in-domain intermediate (_id) fieldvariable (subdivided in x1_i & x2_i)
z_x1 = np.linspace(0, b, len(spatial_domain) * k1 / k)
x1_id_desired = tr.power_series(z_x1, t_x, C)
z_x2 = np.linspace(b, l, len(spatial_domain) * k2 / k)[1:]
Beispiel #18
0
initial_weights = cr.project_on_base(start_state, eig_funcs)

# init trajectory
traj = tr.RadTrajectory(l, T, param_t, bound_cond_type, actuation_type)

# input with feedback
control_law = sim.SimulationInputSum([traj, controller])

# determine (A,B) with modal-transfomation
A = np.diag(eig_values)
B = -a2 * np.array([eig_funcs[i].derive()(l) for i in xrange(n)])
ss = sim.StateSpace("eig_funcs", A, B)

# evaluate desired output data
z_d = np.linspace(0, l, len(spatial_domain))
y_d, t_d = tr.gevrey_tanh(T, 80)
C = tr.coefficient_recursion(np.zeros(y_d.shape), y_d, param)
x_l = tr.power_series(z_d, t_d, C)
evald_traj = vis.EvalData([t_d, z_d], x_l, name="x(z,t) desired")

# simulate
t, q = sim.simulate_state_space(ss, control_law, initial_weights, temporal_domain)

# pyqtgraph visualization
evald_x = ut.evaluate_approximation("eig_funcs", q, t, spatial_domain,
                                    name="x(z,t) with x(z,0)=" + str(init_profile))
win1 = vis.PgAnimatedPlot([evald_x, evald_traj], title="animation", dt=T / len(temporal_domain) * 4)
win2 = vis.PgSurfacePlot([evald_x], title=evald_x.name, grid_height=1)
win3 = vis.PgSurfacePlot([evald_traj], title=evald_traj.name, grid_height=1)
pg.QtGui.QApplication.instance().exec_()