Beispiel #1
0
 def plot(self, tof, N=60, units=AU, color="b", label=None, axes=None):
     from pykep.orbit_plots import plot_kepler
     plot_kepler(r0=self._r,
                 v0=self._v,
                 tof=tof,
                 mu=self._mu,
                 N=N,
                 units=units,
                 color=color,
                 label=label,
                 axes=axes)
    def plot(self, x, axes=None):
        """
        ax = prob.plot_trajectory(x, axes=None)

        - x: encoded trajectory
        - axes: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from pykep.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if axes is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axes = fig.gca(projection='3d')

        axes.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various deep space
        # manouvres timing (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))
        plot_planet(self.start,
                    t0=epoch(x[0]),
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=AU,
                    ax=axes,
                    s=0)
        plot_planet(self.target,
                    t0=epoch(x[0] + x[1]),
                    color=(0.8, 0.6, 0.8),
                    legend=True,
                    units=AU,
                    ax=axes,
                    s=0)

        DV_list = x[5::4]
        maxDV = max(DV_list)
        DV_list = [s / maxDV * 30 for s in DV_list]
        colors = ['b', 'r'] * (len(DV_list) + 1)

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            axes.scatter(rsc[0] / AU,
                         rsc[1] / AU,
                         rsc[2] / AU,
                         color='k',
                         s=DV_list[i])
            plot_kepler(rsc,
                        vsc,
                        T[i] * DAY2SEC,
                        self.__common_mu,
                        N=200,
                        color=colors[i],
                        legend=False,
                        units=AU,
                        ax=axes)
            rsc, vsc = propagate_lagrangian(rsc, vsc, T[i] * DAY2SEC,
                                            self.__common_mu)

        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)
        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        plot_lambert(l,
                     sol=0,
                     color=colors[i + 1],
                     legend=False,
                     units=AU,
                     ax=axes,
                     N=200)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
        DV1 = norm([a - b for a, b in zip(v_beg_l, vsc)])
        DV2 = norm([a - b for a, b in zip(v_end_l, v_target)])

        axes.scatter(rsc[0] / AU,
                     rsc[1] / AU,
                     rsc[2] / AU,
                     color='k',
                     s=min(DV1 / maxDV * 30, 40))
        axes.scatter(r_target[0] / AU,
                     r_target[1] / AU,
                     r_target[2] / AU,
                     color='k',
                     s=min(DV2 / maxDV * 30, 40))

        return axes
Beispiel #3
0
    def plot(self, x, ax=None):
        """
        ax = prob.plot(x, ax=None)

        - x: encoded trajectory
        - ax: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from pykep.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if ax is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axis = fig.gca(projection='3d')
        else:
            axis = ax

        axis.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various times of flight
        # (days) in the list T and the cartesian components of vinf
        T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x)

        # 2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.n_legs + 1))
        r_P = list([None] * (self.n_legs + 1))
        v_P = list([None] * (self.n_legs + 1))
        DV = list([None] * (self.n_legs + 1))

        for i, planet in enumerate(self._seq):
            t_P[i] = epoch(x[0] + sum(T[0:i]))
            r_P[i], v_P[i] = planet.eph(t_P[i])
            plot_planet(planet,
                        t0=t_P[i],
                        color=(0.8, 0.6, 0.8),
                        legend=True,
                        units=AU,
                        axes=axis,
                        N=150)

        # 3 - We start with the first leg
        v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
        r, v = propagate_lagrangian(r_P[0], v0, x[4] * T[0] * DAY2SEC,
                                    self.common_mu)

        plot_kepler(r_P[0],
                    v0,
                    x[4] * T[0] * DAY2SEC,
                    self.common_mu,
                    N=100,
                    color='b',
                    legend=False,
                    units=AU,
                    axes=axis)

        # Lambert arc to reach seq[1]
        dt = (1 - x[4]) * T[0] * DAY2SEC
        l = lambert_problem(r, r_P[1], dt, self.common_mu, False, False)
        plot_lambert(l, sol=0, color='r', legend=False, units=AU, axes=axis)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        # First DSM occuring at time nu1*T1
        DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])

        # 4 - And we proceed with each successive leg
        for i in range(1, self.n_legs):
            # Fly-by
            v_out = fb_prop(v_end_l, v_P[i],
                            x[7 + (i - 1) * 4] * self._seq[i].radius,
                            x[6 + (i - 1) * 4], self._seq[i].mu_self)
            # s/c propagation before the DSM
            r, v = propagate_lagrangian(r_P[i], v_out,
                                        x[8 + (i - 1) * 4] * T[i] * DAY2SEC,
                                        self.common_mu)
            plot_kepler(r_P[i],
                        v_out,
                        x[8 + (i - 1) * 4] * T[i] * DAY2SEC,
                        self.common_mu,
                        N=100,
                        color='b',
                        legend=False,
                        units=AU,
                        axes=axis)
            # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1 - x[8 + (i - 1) * 4]) * T[i] * DAY2SEC

            l = lambert_problem(r, r_P[i + 1], dt, self.common_mu, False,
                                False)
            plot_lambert(l,
                         sol=0,
                         color='r',
                         legend=False,
                         units=AU,
                         N=1000,
                         axes=axis)

            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]
            # DSM occuring at time nu2*T2
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
        plt.show()
        return axis
Beispiel #4
0
    def plot(self, x, axes=None):
        """
        ax = prob.plot_trajectory(x, axes=None)

        - x: encoded trajectory
        - axes: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from pykep.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if axes is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axes = fig.gca(projection='3d')

        axes.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various deep space
        # manouvres timing (days) in the list T
        T = list([0] * (self.N_max - 1))

        for i in range(len(T)):
            T[i] = log(x[2 + 4 * i])
        total = sum(T)
        T = [x[1] * time / total for time in T]

        # 2 - We compute the starting and ending position
        r_start, v_start = self.start.eph(epoch(x[0]))
        if self.phase_free:
            r_target, v_target = self.target.eph(epoch(x[-1]))
        else:
            r_target, v_target = self.target.eph(epoch(x[0] + x[1]))
        plot_planet(self.start, t0=epoch(x[0]), color=(
            0.8, 0.6, 0.8), legend=True, units=AU, ax=axes, s=0)
        plot_planet(self.target, t0=epoch(
            x[0] + x[1]), color=(0.8, 0.6, 0.8), legend=True, units=AU, ax=axes, s=0)

        DV_list = x[5::4]
        maxDV = max(DV_list)
        DV_list = [s / maxDV * 30 for s in DV_list]
        colors = ['b', 'r'] * (len(DV_list) + 1)

        # 3 - We loop across inner impulses
        rsc = r_start
        vsc = v_start
        for i, time in enumerate(T[:-1]):
            theta = 2 * pi * x[3 + 4 * i]
            phi = acos(2 * x[4 + 4 * i] - 1) - pi / 2

            Vinfx = x[5 + 4 * i] * cos(phi) * cos(theta)
            Vinfy = x[5 + 4 * i] * cos(phi) * sin(theta)
            Vinfz = x[5 + 4 * i] * sin(phi)

            # We apply the (i+1)-th impulse
            vsc = [a + b for a, b in zip(vsc, [Vinfx, Vinfy, Vinfz])]
            axes.scatter(rsc[0] / AU, rsc[1] / AU, rsc[2] /
                         AU, color='k', s=DV_list[i])
            plot_kepler(rsc, vsc, T[i] * DAY2SEC, self.__common_mu,
                        N=200, color=colors[i], legend=False, units=AU, ax=axes)
            rsc, vsc = propagate_lagrangian(
                rsc, vsc, T[i] * DAY2SEC, self.__common_mu)

        cw = (ic2par(rsc, vsc, self.start.mu_central_body)[2] > pi / 2)
        # We now compute the remaining two final impulses
        # Lambert arc to reach seq[1]
        dt = T[-1] * DAY2SEC
        l = lambert_problem(rsc, r_target, dt, self.__common_mu, cw, False)
        plot_lambert(l, sol=0, color=colors[
                     i + 1], legend=False, units=AU, ax=axes, N=200)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]
        DV1 = norm([a - b for a, b in zip(v_beg_l, vsc)])
        DV2 = norm([a - b for a, b in zip(v_end_l, v_target)])

        axes.scatter(rsc[0] / AU, rsc[1] / AU, rsc[2] / AU,
                     color='k', s=min(DV1 / maxDV * 30, 40))
        axes.scatter(r_target[0] / AU, r_target[1] / AU,
                     r_target[2] / AU, color='k', s=min(DV2 / maxDV * 30, 40))

        return axes
Beispiel #5
0
    def plot(self, x, ax=None):
        """
        ax = prob.plot(x, ax=None)

        - x: encoded trajectory
        - ax: matplotlib axis where to plot. If None figure and axis will be created
        - [out] ax: matplotlib axis where to plot

        Plots the trajectory represented by a decision vector x on the 3d axis ax

        Example::

          ax = prob.plot(x)
        """
        import matplotlib as mpl
        from mpl_toolkits.mplot3d import Axes3D
        import matplotlib.pyplot as plt
        from pykep.orbit_plots import plot_planet, plot_lambert, plot_kepler

        if ax is None:
            mpl.rcParams['legend.fontsize'] = 10
            fig = plt.figure()
            axis = fig.gca(projection='3d')
        else:
            axis = ax

        axis.scatter(0, 0, 0, color='y')

        # 1 -  we 'decode' the chromosome recording the various times of flight
        # (days) in the list T and the cartesian components of vinf
        T, Vinfx, Vinfy, Vinfz = self._decode_times_and_vinf(x)

        # 2 - We compute the epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self.__n_legs + 1))
        r_P = list([None] * (self.__n_legs + 1))
        v_P = list([None] * (self.__n_legs + 1))
        DV = list([None] * (self.__n_legs + 1))

        for i, planet in enumerate(self.seq):
            t_P[i] = epoch(x[0] + sum(T[0:i]))
            r_P[i], v_P[i] = planet.eph(t_P[i])
            plot_planet(planet, t0=t_P[i], color=(
                0.8, 0.6, 0.8), legend=True, units=AU, ax=axis)

        # 3 - We start with the first leg
        v0 = [a + b for a, b in zip(v_P[0], [Vinfx, Vinfy, Vinfz])]
        r, v = propagate_lagrangian(
            r_P[0], v0, x[5] * T[0] * DAY2SEC, self.common_mu)

        plot_kepler(r_P[0], v0, x[5] * T[0] * DAY2SEC, self.common_mu,
                    N=100, color='b', legend=False, units=AU, ax=axis)

        # Lambert arc to reach seq[1]
        dt = (1 - x[5]) * T[0] * DAY2SEC
        l = lambert_problem(r, r_P[1], dt, self.common_mu, False, False)
        plot_lambert(l, sol=0, color='r', legend=False, units=AU, ax=axis)
        v_end_l = l.get_v2()[0]
        v_beg_l = l.get_v1()[0]

        # First DSM occuring at time nu1*T1
        DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])

        # 4 - And we proceed with each successive leg
        for i in range(1, self.__n_legs):
            # Fly-by
            v_out = fb_prop(v_end_l, v_P[i], x[
                            8 + (i - 1) * 4] * self.seq[i].radius, x[7 + (i - 1) * 4], self.seq[i].mu_self)
            # s/c propagation before the DSM
            r, v = propagate_lagrangian(
                r_P[i], v_out, x[9 + (i - 1) * 4] * T[i] * DAY2SEC, self.common_mu)
            plot_kepler(r_P[i], v_out, x[9 + (i - 1) * 4] * T[i] * DAY2SEC,
                        self.common_mu, N=100, color='b', legend=False, units=AU, ax=axis)
            # Lambert arc to reach Earth during (1-nu2)*T2 (second segment)
            dt = (1 - x[9 + (i - 1) * 4]) * T[i] * DAY2SEC

            l = lambert_problem(r, r_P[i + 1], dt,
                                self.common_mu, False, False)
            plot_lambert(l, sol=0, color='r', legend=False,
                         units=AU, N=1000, ax=axis)

            v_end_l = l.get_v2()[0]
            v_beg_l = l.get_v1()[0]
            # DSM occuring at time nu2*T2
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
        plt.show()
        return axis
Beispiel #6
0
    def _fitness_impl(self, decoded_x, logging=False, plotting=False, ax=None):
        """ Computation of the objective function. """

        saturn_distance_violated = 0

        # decode x
        t0, u, v, dep_vinf, etas, T, betas, rps = decoded_x

        # convert incoming velocity vector
        theta, phi = 2.0 * pi * u, acos(2.0 * v - 1.0) - pi / 2.0
        Vinfx = dep_vinf * cos(phi) * cos(theta)
        Vinfy = dep_vinf * cos(phi) * sin(theta)
        Vinfz = dep_vinf * sin(phi)

        # epochs and ephemerides of the planetary encounters
        t_P = list([None] * (self._n_legs + 1))
        r_P = list([None] * (self._n_legs + 1))
        v_P = list([None] * (self._n_legs + 1))
        lamberts = list([None] * (self._n_legs))
        v_outs = list([None] * (self._n_legs))
        DV = list([0.0] * (self._n_legs + 1))

        for i, planet in enumerate(self.seq):
            t_P[i] = epoch(t0 + sum(T[0:i]))
            r_P[i], v_P[i] = self.seq[i].eph(t_P[i])

        # first leg
        v_outs[0] = [Vinfx, Vinfy, Vinfz]  # bug fixed

        # check first leg up to DSM
        saturn_distance_violated += self.check_distance(
            r_P[0], v_outs[0], t0, etas[0] * T[0])
        r, v = propagate_lagrangian(r_P[0], v_outs[0],
                                    etas[0] * T[0] * DAY2SEC, self.common_mu)

        # Lambert arc to reach seq[1]
        dt = (1.0 - etas[0]) * T[0] * DAY2SEC
        lamberts[0] = lambert_problem(r, r_P[1], dt, self.common_mu, self.cw,
                                      0)
        v_end_l = lamberts[0].get_v2()[0]
        v_beg_l = lamberts[0].get_v1()[0]

        # First DSM occuring at time eta0*T0
        DV[0] = norm([a - b for a, b in zip(v_beg_l, v)])
        # checking first leg after DSM
        saturn_distance_violated += self.check_distance(
            r, v_beg_l, etas[0] * T[0], T[0])

        # successive legs
        for i in range(1, self._n_legs):
            # Fly-by
            v_outs[i] = fb_prop(v_end_l, v_P[i],
                                rps[i - 1] * self.seq[i].radius, betas[i - 1],
                                self.seq[i].mu_self)
            # checking next leg up to DSM
            saturn_distance_violated += self.check_distance(
                r_P[i], v_outs[i], T[i - 1], etas[i] * T[i])
            # s/c propagation before the DSM
            r, v = propagate_lagrangian(r_P[i], v_outs[i],
                                        etas[i] * T[i] * DAY2SEC,
                                        self.common_mu)
            # Lambert arc to reach next body
            dt = (1 - etas[i]) * T[i] * DAY2SEC
            lamberts[i] = lambert_problem(r, r_P[i + 1], dt, self.common_mu,
                                          self.cw, 0)
            v_end_l = lamberts[i].get_v2()[0]
            v_beg_l = lamberts[i].get_v1()[0]
            # DSM occuring at time eta_i*T_i
            DV[i] = norm([a - b for a, b in zip(v_beg_l, v)])
            # checking next leg after DSM
            saturn_distance_violated += self.check_distance(
                r, v_beg_l, etas[i] * T[i], T[i])

        # single dv penalty for now
        if saturn_distance_violated > 0:
            DV[-1] += DV_PENALTY

        arr_vinf = norm([a - b for a, b in zip(v_end_l, v_P[-1])])

        # last Delta-v
        if self._add_vinf_arr:
            DV[-1] = arr_vinf

        if self._add_vinf_dep:
            DV[0] += dep_vinf

        # pretty printing
        if logging:
            print("First leg: {} to {}".format(self.seq[0].name,
                                               self.seq[1].name))
            print("Departure: {0} ({1:0.6f} mjd2000)".format(
                t_P[0], t_P[0].mjd2000))
            print("Duration: {0:0.6f}d".format(T[0]))
            print("VINF: {0:0.3f}m/s".format(dep_vinf))
            print("DSM after {0:0.6f}d".format(etas[0] * T[0]))
            print("DSM magnitude: {0:0.6f}m/s".format(DV[0]))

            for i in range(1, self._n_legs):
                print("\nleg {}: {} to {}".format(i + 1, self.seq[i].name,
                                                  self.seq[i + 1].name))
                print("Duration: {0:0.6f}d".format(T[i]))
                print("Fly-by epoch: {0} ({1:0.6f} mjd2000)".format(
                    t_P[i], t_P[i].mjd2000))
                print("Fly-by radius: {0:0.6f} planetary radii".format(rps[i -
                                                                           1]))
                print("DSM after {0:0.6f}d".format(etas[i] * T[i]))
                print("DSM magnitude: {0:0.6f}m/s".format(DV[i]))

            print("\nArrival at {}".format(self.seq[-1].name))
            print("Arrival epoch: {0} ({1:0.6f} mjd2000)".format(
                t_P[-1], t_P[-1].mjd2000))
            print("Arrival Vinf: {0:0.3f}m/s".format(arr_vinf))
            print("Total mission time: {0:0.6f}d ({1:0.3f} years)".format(
                sum(T),
                sum(T) / 365.25))

        # plotting
        if plotting:
            ax.scatter(0, 0, 0, color='chocolate')
            for i, planet in enumerate(self.seq):
                plot_planet(planet,
                            t0=t_P[i],
                            color=pl2c[planet.name],
                            legend=True,
                            units=AU,
                            ax=ax)
            for i in range(0, self._n_legs):
                plot_kepler(r_P[i],
                            v_outs[i],
                            etas[i] * T[i] * DAY2SEC,
                            self.common_mu,
                            N=100,
                            color='b',
                            legend=False,
                            units=AU,
                            ax=ax)
            for l in lamberts:
                plot_lambert(l,
                             sol=0,
                             color='r',
                             legend=False,
                             units=AU,
                             N=1000,
                             ax=ax)

        # returning building blocks for objectives
        return (DV, T, arr_vinf, lamberts)