Beispiel #1
0
    def plot_spectral_points(self, spectra, fmt='r+', labels=None, lpos=None):
        '''
        Plots spectral profiles in feature space.
        '''
        m, n, c = self.__dims__
        assert type(spectra) in (
            list, tuple,
            np.ndarray), 'Expected spectra to be a list, tuple, or numpy array'

        if labels is not None and lpos is None:
            lpos = [(30, -30)] * len(labels)

        for i, spec in enumerate(spectra):
            plt.plot(spec[m], spec[n], fmt, ms=20, mew=2)

            if labels is not None:
                xy = (spec[m], spec[n])
                plt.annotate(labels[i],
                             xy=xy,
                             xytext=lpos[i],
                             textcoords='offset points',
                             ha='right',
                             va='bottom',
                             fontsize=14,
                             arrowprops=dict(arrowstyle='->',
                                             connectionstyle='arc3,rad=0'))
Beispiel #2
0
    def plot_xy_points(self,
                       coords,
                       fmt='r+',
                       labels=None,
                       lpos=None,
                       dd=True):
        '''
        Add point(s) to the plot, given by their longitude-latitude (XY)
        coordinates, which will be displayed at the appropriate feature space
        coordinates.
        '''
        assert not self.__raveled__, 'Cannot do this when the input array is raveled'
        m, n, c = self.__dims__
        pcoords = xy_to_pixel(coords, gt=self.__gt__, wkt=self.__wkt__, dd=dd)

        if labels is not None and lpos is None:
            lpos = [(10, -10)] * len(labels)

        # http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.plot
        for i, (x, y) in enumerate(pcoords):
            spec = self.features[x, y, :]
            plt.plot(spec[m], spec[n], fmt, ms=20, mew=2)

            if labels is not None:
                plt.annotate(labels[i],
                             xy=(spec[m], spec[n]),
                             xytext=lpos[i],
                             textcoords='offset points',
                             ha='right',
                             va='bottom',
                             fontsize=14,
                             arrowprops=dict(arrowstyle='->',
                                             connectionstyle='arc3,rad=0'))
Beispiel #3
0
    def plot_profits(self, player, period):

        profits = self.results["profits"][-period:]

        plt.title("Profits")
        time_window = 100
        x = np.arange(len(profits[:, player]))
        y = []
        for i in x:
            if i < time_window:
                y_value = np.mean(profits[:i + 1, player])

            else:
                y_value = np.mean(profits[i - time_window:i + 1, player])

            y.append(y_value)

        plt.plot(x, y, color="black")
        maximum_profit = \
            self.parameters["n_positions"] * \
            self.parameters["n_prices"]
        plt.ylim(0, maximum_profit)

        plt.annotate("Time window: {}".format(time_window),
                     xy=(0.8, 0.1),
                     xycoords='axes fraction',
                     fontsize=6)

        # plt.annotate(self.string_parameters, xy=(-0.05, -0.1), xycoords='axes fraction', fontsize=6)

        plt.savefig(self.format_fig_name("profits_player{}".format(player)))
        plt.close()
Beispiel #4
0
def biaozhukedu(dfc, weibiao):
    if weibiao == dfc.index.max():
        kedus = [dfc.loc[weibiao]]
    else:
        kedus = [dfc.loc[weibiao], dfc.loc[dfc.index.max()]]
    # print(type(kedus[0]))
    for ii in range(len(kedus)):
        kedu = kedus[ii]
        if (len(dfc.index)) > 12:
            idx = kedu.name
        else:
            idx = list(dfc.index).index(kedu.name)
        if not np.isnan(kedu.iloc[0]):
            plt.plot([idx, idx], [0, kedu.iloc[0]], 'c--')
            plt.annotate(str(kedu.name),
                         xy=(idx, 0),
                         xycoords='data',
                         xytext=(-20, -20),
                         textcoords='offset points',
                         color='r',
                         arrowprops=dict(arrowstyle="->",
                                         connectionstyle="arc3,rad=0"))
        for i in range(len(kedu)):
            if np.isnan(kedu.iloc[i]):
                # print(kedu.iloc[i])
                # print(type(kedu.iloc[i]))
                continue
            plt.scatter([
                idx,
            ], [kedu.iloc[i]], 50, color='Wheat')
            # global ywananchor
            if kedu.map(lambda x: abs(x)).max() >= ywananchor:
                kedubiaozhi = "%.1f万" % (kedu.iloc[i] / 10000)
                plt.gca().yaxis.set_major_formatter(
                    FuncFormatter(lambda x, pos: "%d万" % int(x / 10000))
                )  # 纵轴主刻度文本用y_formatter函数计算
            else:
                kedubiaozhi = "%d" % kedu.iloc[i]
            fontsize = 8
            if (i % 2) == 0:
                zhengfu = -1
            else:
                zhengfu = 0.4
            plt.annotate(
                kedubiaozhi,
                xy=(idx, kedu.iloc[i]),
                xycoords='data',
                xytext=(len(kedubiaozhi) * fontsize * zhengfu,
                        int(len(kedubiaozhi) * fontsize * (-1) * zhengfu / 2)),
                textcoords='offset points',
                fontsize=fontsize,
                arrowprops=dict(arrowstyle="->",
                                connectionstyle="arc3,rad=.2",
                                color='Purple'))
 def add_data(self,
              income,
              grade,
              color='yellow',
              markersize=25,
              markertext=None):
     """Add a value and plot it"""
     self.incomes.append(income)
     self.grades.append(grade)
     plt.plot([income], [grade],
              color=color,
              marker='o',
              markersize=markersize)
     if markertext:
         plt.annotate(markertext,
                      xy=(income, grade),
                      horizontalalignment='center',
                      verticalalignment='center')
Beispiel #6
0
plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(True)
plt.show()

'==========================================='

ax = plt.subplot(111)

t = np.arange(0.0, 5.0, 0.01)
s = np.cos(2 * np.pi * t)
line, = plt.plot(t, s, lw=2)

plt.annotate(
    'local max',
    xy=(2, 1),
    xytext=(3, 1.5),
    arrowprops=dict(facecolor='black', shrink=0.05),
)

plt.ylim(-2, 2)
plt.show()

'==========================================='

# 导入 matplotlib 的所有内容(nympy 可以用 np 这个名字来使用)

# 创建一个 8 * 6 点(point)的图,并设置分辨率为 80
figure(figsize=(8, 6), dpi=80)

# 创建一个新的 1 * 1 的子图,接下来的图样绘制在其中的第 1 块(也是唯一的一块)
subplot(1, 1, 1)
        del expr
        
S_T = S_BM[ -1 ]        

 
mu_3s = np.mean( S_T )  + 3 * np.std( S_T )
mu_5s = np.mean( S_T )  + 5 * np.std( S_T )
#............................................................................
#   Histogram of final values
#............................................................................
plt.hist( S_T, bins = 100, edgecolor = 'darkgray', color = 'darkblue' )
plt.axvline( S0, linestyle = 'dashed', alpha = 0.8, color = 'darkred' )
plt.axvline( np.mean( S_T ) , linestyle = 'dashed', alpha = 0.8, color = 'red' )

plt.axvline( mu_3s, linestyle = 'dashed', alpha = 0.8, color = 'red' )
plt.annotate( s = '$\mu + 3\sigma = $' + str( round( mu_3s ,1) ), xy=(mu_3s, 500 ) )

plt.axvline( mu_5s, linestyle = 'dashed', alpha = 0.8, color = 'red' )
plt.annotate( s = '$\mu + 5\sigma = $' + str( round( mu_5s ,1) ), xy=(mu_5s, 500 ) )

plt.xlabel('index level' )
plt.ylabel('frequency' )
plt.title( 'Geometric Brownian Motion: distribution of $S_T$' )


#............................................................................
#  Sample of paths
#............................................................................
plt.plot( S_BM[:, :10], lw = 0.85, linestyle = '-.' )
plt.xlabel('time')
plt.xlabel('index level')
Beispiel #8
0
def getcutpoint(inputdatapath):
    """
    根据时间间隔找到分割点,生成最近一次的图像和全部综合图像并返回
    """
    totalmen = gettotalmem(getdatapath(inputdatapath))
    inputdf = getdatadf(getdatapath(inputdatapath))
    ds = inputdf['time'] - inputdf['time'].shift()
    deltads = ds[ds > getdelta()]

    outlst = list()
    for ix in deltads.index:
        ipos = list(inputdf.index).index(ix)
        # 处理内存占满(但未重启)的特殊情况
        if inputdf.iloc[ipos - 1]['freeper'] == 0:
            continue
        print()
        print(ipos, ix, deltads[ix])
        outlst.append(ipos)
#         bfdf = inputdf[inputdf.index >= (ix - deltads[ix] + pd.Timedelta(minutes=-5))]
#         tmpdf = bfdf[bfdf.index < (ix + pd.Timedelta(minutes=5))]
#         print(tmpdf)

    outlst.insert(0, 0)
    outlst.append(inputdf.shape[0])

    plt.rcParams['font.sans-serif'] = 'SimHei'
    olen = len(outlst)
    if olen == 2:
        picheight = 1
    elif olen == 3:
        picheight = 2
    else:
        picheight = 3
    plt.figure(figsize=(10, 10 * picheight))
    imgpath = getdirmain() / 'img' / 'freemen.png'
    touchfilepath2depth(imgpath)
    #     fig, ax1 = plt.subplots()
    # 针对数据集周期次数进行处理,主要是处理小于三次的情况
    if len(outlst) > 3:
        plt.subplot(311)
    elif len(outlst) == 3:
        plt.subplot(211)

    # 最近数据集图形化输出
    plt.ylabel(f'空闲内存百分比({totalmen}G)')
    cutdf = inputdf.iloc[outlst[-2]:outlst[-1]]
    plt.plot(cutdf.index, cutdf['freeper'])
    plt.ylim(0, 100)
    plt.title('最近一次运行')
    plt.annotate(cutdf.index[0].strftime("%y-%m-%d %H:%M"),
                 xy=[cutdf.index[0], cutdf.iloc[0, 1]])
    plt.annotate(cutdf.index[-1].strftime("%y-%m-%d %H:%M"),
                 xy=[cutdf.index[-1], cutdf.iloc[-1, 1]])

    # 针对单次(一般也是首次运行)数据集进行处理
    if len(outlst) == 2:
        plt.savefig(imgpath)
        return str(imgpath)

    # 针对数据集周期次数进行处理,主要是处理小于三次的情况
    if len(outlst) == 3:
        plt.subplot(212)
    elif len(outlst) > 3:
        plt.subplot(312)
    plt.ylabel(f'空闲内存百分比({totalmen}G)')
    plt.ylim(0, 100)
    plt.title('最近两次运行')
    twolst = outlst[-3:]
    for i in range(len(twolst) - 1):
        cutdf = inputdf.iloc[twolst[i]:twolst[i + 1]]
        plt.plot(cutdf.index, cutdf['freeper'])
        plt.annotate(cutdf.index[0].strftime("%y-%m-%d %H:%M"),
                     xy=[cutdf.index[0], cutdf.iloc[0, 1]])
        plt.annotate(cutdf.index[-1].strftime("%y-%m-%d %H:%M"),
                     xy=[cutdf.index[-1], cutdf.iloc[-1, 1]])

    # 综合(全部)数据集图形输出
    # 针对仅有两次数据集进行处理
    if len(outlst) == 3:
        plt.savefig(imgpath)
        return str(imgpath)
    else:
        plt.subplot(313)
    plt.ylabel(f'空闲内存百分比({totalmen}G)')
    plt.ylim(0, 100)
    plt.title('历次运行')
    for i in range(len(outlst) - 1):
        cutdf = inputdf.iloc[outlst[i]:outlst[i + 1]]
        plt.plot(cutdf.index, cutdf['freeper'])
        plt.annotate(cutdf.index[0].strftime("%y-%m-%d %H:%M"),
                     xy=[cutdf.index[0], cutdf.iloc[0, 1]])
        plt.annotate(cutdf.index[-1].strftime("%y-%m-%d %H:%M"),
                     xy=[cutdf.index[-1], cutdf.iloc[-1, 1]])

    plt.savefig(imgpath)
    return str(imgpath)