def plot_mat(self, mat, fn):
     plt.matshow(asarray(mat.todense()))
     plt.axis('equal')
     sh = mat.shape
     plt.gca().set_yticks(range(0, sh[0]))
     plt.gca().set_xticks(range(0, sh[1]))
     plt.grid('on')
     plt.colorbar()
     plt.savefig(join(self.outs_dir, fn))
     plt.close()
 def plot_mat(self, mat, fn):
     plt.matshow(asarray(mat.todense()))
     plt.axis('equal')
     sh = mat.shape
     plt.gca().set_yticks(range(0,sh[0]))
     plt.gca().set_xticks(range(0,sh[1]))
     plt.grid('on')
     plt.colorbar()
     plt.savefig(join(self.outs_dir, fn))
     plt.close()
Beispiel #3
0
    def test1(self):
        file_G = join(self.share_dir, 'G0_He50km_VisM6.3E18_Rake83.h5')
        G = vj.inv.ep.EpochGNoRaslip(file_G, mask_sites=['J550'])

        out = G.get_data_at_epoch(0)

        stacked = G.stack([0, 60, 120])

        plt.matshow(abs(stacked) * 100, aspect=5)
        # plt.show()
        plt.close()
Beispiel #4
0
    def test1(self):
        file_G = join(self.share_dir,'G0_He50km_VisM6.3E18_Rake83.h5')
        G = vj.inv.ep.EpochGNoRaslip(file_G,
                             mask_sites= ['J550']
        )

        out = G.get_data_at_epoch(0)

        stacked = G.stack([0,60,120])

        plt.matshow(abs(stacked)*100, aspect=5)
        # plt.show()
        plt.close()
Beispiel #5
0
 def plot_convictions(self):
     # plt.figure()
     plt.matshow(self.get_matrix_of_agents_convictions())
     plt.colorbar()
     plt.clim(-1, 1)  # Sets the min/max limits of colorbar
     plt.title("Convictions")
Beispiel #6
0
 def plot_culture(self):
     # plt.figure()
     plt.matshow(self.get_matrix_of_agents_culture())
     plt.colorbar()
     plt.clim(0, 1)  # Sets the min/max limits of colorbar
     plt.title("Culture")
Beispiel #7
0
from sigfeat import Extractor
from sigfeat.feature import MFCC

extmfcc = Extractor(MFCC())

if __name__ == '__main__':
    from pylab import plt, np

    from sigfeat.source.soundfile import SoundFileSource
    from sigfeat.preprocess import MeanMix
    from sigfeat.sink import DefaultDictSink

    src = MeanMix(SoundFileSource('Test.wav', blocksize=4096, overlap=2048))

    sink = DefaultDictSink()
    extmfcc.extract(src, sink)

    plt.matshow(np.array(sink['results']['MFCC']).T)
    plt.axis('tight')
    plt.show()