Beispiel #1
0
    def plot_topo_xsec(current_data):
        from pylab import find, ravel
        x = current_data.x
        y = current_data.y
        dy = current_data.dy

        ij = find((y <= dy / 2.) & (y > -dy / 2.))
        x_slice = ravel(x)[ij]
        b_slice = ravel(b(current_data))[ij]
        return x_slice, b_slice
Beispiel #2
0
    def plot_topo_xsec(current_data):
        from pylab import find,ravel
        x = current_data.x
        y = current_data.y
        dy = current_data.dy

        ij = find((y <= dy/2.) & (y > -dy/2.))
        x_slice = ravel(x)[ij]
        b_slice = ravel(b(current_data))[ij]
        return x_slice, b_slice
Beispiel #3
0
 def slice_y(current_data):
     from pylab import find,ravel
     x = current_data.x
     y = current_data.y
     dx = current_data.dx
     q = current_data.q
     ij = find((x <= longitude+dx/2.) & (x > longitude-dx/2.))
     y_slice = ravel(y)[ij]
     eta_slice = ravel(q[3,:,:])[ij]
     return y_slice, eta_slice
Beispiel #4
0
 def slice_xp(current_data):
     from pylab import find,ravel
     x = current_data.x
     y = current_data.y
     dy = current_data.dy
     q = current_data.q
     ij = find((y <= latitude+dy+dy/2.) & (y > latitude+dy-dy/2.))
     x_slice = ravel(x)[ij]
     eta_slice = ravel(q[3,:,:])[ij]
     return x_slice, eta_slice
Beispiel #5
0
 def slice_x(current_data):
     from pylab import find,ravel
     x = current_data.x
     y = current_data.y
     dy = current_data.dy
     q = current_data.q
     ij = find((y <= latitude+dy/2.) & (y > latitude-dy/2.))
     x_slice = ravel(x)[ij]
     eta_slice = ravel(q[3,:,:])[ij]
     print "+++ min eta = ",eta_slice.min()
     return x_slice, eta_slice
Beispiel #6
0
    def xsec(current_data):
        # Return x value and surface eta at this point, along y=0
        from pylab import find, ravel
        x = current_data.x
        y = current_data.y
        dy = current_data.dy

        ij = find((y <= dy / 2.) & (y > -dy / 2.))
        x_slice = ravel(x)[ij]
        eta_slice = ravel(plot_eta(current_data))[ij]
        return x_slice, eta_slice
Beispiel #7
0
    def xsec(current_data):
        # Return x value and surface eta at this point, along y=0
        from pylab import find,ravel
        x = current_data.x
        y = current_data.y
        dy = current_data.dy

        ij = find((y <= dy/2.) & (y > -dy/2.))
        x_slice = ravel(x)[ij]
        eta_slice = ravel(plot_eta(current_data))[ij]
        return x_slice, eta_slice
Beispiel #8
0
    def xsec(current_data):
        # Return x value and surface eta at this point, along y=0
        from pylab import find,ravel
        x = current_data.x
        y = current_data.y
        dy = current_data.dy
        q = current_data.q

        ij = find((y <= y0+dy/2.+1e-8) & (y > y0-dy/2.))
        x_slice = ravel(x)[ij]
        eta_slice = ravel(q[3,:,:])[ij]
        return x_slice, eta_slice
 def xsec_hu(current_data):
     # Return x value and discharge at this point, along y=0
     from pylab import find,ravel,where,sqrt
     x = current_data.x
     y = current_data.y
     dy = current_data.dy
     q = current_data.q
     hu = q[1,:]
     ij = find((y <= 0.76+dy/2.) & (y > 0.76-dy/2.))
     x_slice = ravel(x)[ij]
     hu_slice = ravel(hu)[ij]
     return x_slice, hu_slice
Beispiel #10
0
    def xsec(current_data):
        # Return x value and surface eta at this point, along y=0
        from pylab import where, ravel
        x = current_data.x
        y = ravel(current_data.y)
        dy = current_data.dy
        q = current_data.q

        ij = where((y <= y0 + dy / 2. + 1e-8) & (y > y0 - dy / 2.))[0]
        x_slice = ravel(x)[ij]
        eta_slice = ravel(q[3, :, :])[ij]
        return x_slice, eta_slice
Beispiel #11
0
    def xsec(current_data):
        # Return x value and surface eta at this point, along y=0
        from pylab import ravel
        x = current_data.x
        y = current_data.y
        dy = current_data.dy
        q = current_data.q

        ij = numpy.argwhere((y <= dy / 2.) & (y > -dy / 2.))
        x_slice = ravel(x)[ij]
        eta_slice = ravel(q[3, :, :])[ij]
        return x_slice, eta_slice
Beispiel #12
0
 def B_x(current_data):
     from pylab import find,ravel
     x = current_data.x
     y = current_data.y
     dy = current_data.dy
     q = current_data.q
     ij = find((y <= latitude+dy+dy/2.) & (y > latitude+dy-dy/2.))
     x_slice = ravel(x)[ij]
     eta_slice = ravel(q[3,:,:])[ij]
     h_slice = ravel(q[0,:,:])[ij]
     B_slice = eta_slice - h_slice
     return x_slice, B_slice
Beispiel #13
0
 def slice_x(current_data):
     from pylab import find,ravel,where
     x = current_data.x
     y = current_data.y
     dy = current_data.dy
     q = current_data.q
     ij = find((y <= latitude+dy/2.) & (y > latitude-dy/2.))
     x_slice = ravel(x)[ij]
     eta_slice = ravel(q[3,:,:])[ij]
     h_slice = ravel(q[0,:,:])[ij]
     hu_slice = ravel(q[1,:,:])[ij]
     u_slice = where(h_slice>0, hu_slice/h_slice, 0.)
     return x_slice, u_slice
Beispiel #14
0
 def slice_y(current_data):
     from pylab import find,ravel,where
     x = current_data.x
     y = current_data.y
     dx = current_data.dx
     q = current_data.q
     ij = find((x <= longitude+dx/2.) & (x > longitude-dx/2.))
     y_slice = ravel(y)[ij]
     eta_slice = ravel(q[3,:,:])[ij]
     h_slice = ravel(q[0,:,:])[ij]
     hv_slice = ravel(q[2,:,:])[ij]
     v_slice = where(h_slice>0, hv_slice/h_slice, 0.)
     return y_slice, hv_slice
Beispiel #15
0
 def ysec(current_data):
     # Return x value and surface eta at this point, along y=0
     from pylab import find,ravel
     x = current_data.x
     y = current_data.y
     dx = current_data.dx
     q = current_data.q
     t = current_data.t
     xlower = current_data.xlower
     xupper = current_data.xupper
     
     ij = find((x <= dx/2.) & (x > -dx/2.))
     y_slice = ravel(y)[ij]
     eta_slice = ravel(q[3,:,:])[ij]
     #print 'data'
     #print y_slice
     #fname = 'surface%d'%int(t)+'.txt'
     fname = r'/Users/huitang/clawpack-5.2.0/geoclaw/examples/tsunami/bowl-radial/_output/'+'surface_t=%d'%int(t)+'_ylower=%d'%int(y[1,1])+'.txt'
     fname2 = r'/Users/huitang/clawpack-5.2.0/geoclaw/examples/tsunami/bowl-radial/_output/location'+'_ylower=%d'%int(y[1,1])+'.txt'
     fname3 = r'/Users/huitang/clawpack-5.2.0/geoclaw/examples/tsunami/bowl-radial/_output/'+'momentums_t=%d'%int(t)+'_ylower=%d'%int(y[1,1])+'.txt'
     fname4 = r'/Users/huitang/clawpack-5.2.0/geoclaw/examples/tsunami/bowl-radial/_output/'+'depth_t=%d'%int(t)+'_ylower=%d'%int(y[1,1])+'.txt'
     savetxt(fname3,ravel(q[2,:,:])[ij])
     savetxt(fname,ravel(q[3,:,:])[ij])
     savetxt(fname4,ravel(q[0,:,:])[ij])
     savetxt(fname2,ravel(y)[ij])
     print '***********************************************'
     #print y[1]
     print ravel(q[0,:,:])[ij]
     #print y_slice
     #print y[1,1]
     #print xlower
     #print eta_slice
     return y_slice, eta_slice
Beispiel #16
0
 def B_y(current_data):
     from pylab import find,ravel
     x = current_data.x
     y = current_data.y
     dy = current_data.dy
     q = current_data.q
     dx = current_data.dx
     q = current_data.q
     ij = find((x <= longitude+dx/2.) & (x > longitude-dx/2.))
     y_slice = ravel(y)[ij]
     eta_slice = ravel(q[3,:,:])[ij]
     h_slice = ravel(q[0,:,:])[ij]
     B_slice = eta_slice - h_slice
     return y_slice, B_slice
Beispiel #17
0
    def xsec_B(current_data):
        # Return x value and B at this point, along y=0
        from pylab import find, ravel, where, sqrt
        x = current_data.x
        y = current_data.y
        dy = current_data.dy
        q = current_data.q
        h = q[0, :]
        eta = q[3, :]
        B = eta - h

        ij = find((y <= dy / 2.) & (y > -dy / 2.))
        x_slice = ravel(x)[ij]
        B_slice = ravel(B)[ij]
        return x_slice, B_slice
Beispiel #18
0
    def xsec(current_data):
        # Return x value and surface depth at this point, along y=0
        from pylab import where, ravel
        x = current_data.x
        y = ravel(current_data.y)
        dy = current_data.dy
        q = current_data.q

        ij = where((y <= dy / 1.) & (y > -dy / 1.))
        x_slice = ravel(x)[ij]
        ij1 = where((x_slice > 40.40) | (x_slice < 40.0))
        x_slice = x_slice[ij1]
        depth_slice = ravel(q[0, :, :])[ij]
        depth_slice = depth_slice[ij1]
        return x_slice, depth_slice
Beispiel #19
0
    def xsec_B(current_data):
        # Return x value and B at this point, along y=0
        from pylab import find,ravel,where,sqrt
        x = current_data.x
        y = current_data.y
        dy = current_data.dy
        q = current_data.q
        h = q[0,:]
        eta = q[3,:]
        B = eta - h

        ij = find((y <= dy/2.) & (y > -dy/2.))
        x_slice = ravel(x)[ij]
        B_slice = ravel(B)[ij]
        return x_slice, B_slice
Beispiel #20
0
def pcolor_matrix_pylab(A, fname='pcolor_matrix_matplotlib'):
    """
    pcolor_matrix_pylab() implements a matlab-like 'pcolor' function to
    display the large elements of a matrix in pseudocolor using the Python Imaging
    Library.
    """
    try:
        import matplotlib
        matplotlib.use('Agg')
        import pylab
    except ImportError:
        if pedobj.kw['messages'] == 'verbose':
            print '[ERROR]: pyp_graphics/pcolor_matrix_pylab() was unable to import the matplotlib module!'
        logging.error(
            'pyp_graphics/pcolor_matrix_pylab() was unable to import the matplotlib module!'
        )
        return 0

    try:
        import numpy
        pylab.clf()
        x = pylab.arange(A.shape[0])
        X, Y = pylab.meshgrid(x, x)

        xmin = min(pylab.ravel(X))
        xmax = max(pylab.ravel(X))
        pylab.xlim(xmin, xmax)
        ymin = min(pylab.ravel(Y))
        ymax = max(pylab.ravel(Y))
        pylab.ylim(ymin, ymax)
        pylab.axis('off')

        pylab.pcolor(X, Y, pylab.transpose(A))  #, shading='flat')
        pylab.clim(0.0, 1.0)
        plotfile = '%s.png' % (fname)
        myplotfile = open(plotfile, 'w')
        pylab.savefig(myplotfile)
        myplotfile.close()
        return 1
    except:
        if pedobj.kw['messages'] == 'verbose':
            print '[ERROR]: pyp_graphics/pcolor_matrix_pylab() was unable to create the plot %s.' % (
                plotfile)
        logging.error(
            'pyp_graphics/pcolor_matrix_pylab() was unable to create the plot %s.',
            (plotfile))
        return 0
Beispiel #21
0
def Boxplot ( x, ax=None, offset=0.005, **kwargs ):
    """Creates a Tufte boxplot

    :Parameters:
        *x*
            values to be summarized
        *ax*
            target axes
        *offset*
            offset to mark central part and median gap

    :Optional keyword arguments:
        See pylab.boxplot
    """
    if ax is None:
        ax = pl.gca()
    # call a boxplot and manipulate it
    # how to get the offset right?
    if hasattr (x,'shape'):
        if len(x.shape)==1:
            if hasattr(x[0], 'shape'):
                x = list(x)
            else:
                x = [x,]
        elif len(x.shape) == 2:
            nr, nc = x.shape
            if nr==1:
                x = [x]
            elif nc==1:
                x = [x.ravel()]
            else:
                x = [x[:,i] for i in xrange(nc)]
        else:
            raise ValueError, "input x can have no more than 2 dimensions"
    if not hasattr(x[0],'__len__'):
        x = [x]

    positions = kwargs.setdefault ( 'positions', range(1,len(x)+1) )
    pdist = max(positions)-min(positions)
    offs = 0.5*float(pdist)/len(positions)

    if kwargs.setdefault('vert', 0 ) == 1:
        ax.set_ylim ( positions[0]-offs, positions[-1]+offs )
        ax.set_yticks ( positions )
    else:
        ax.set_xlim ( positions[0]-offs, positions[-1]+offs )
        ax.set_xticks ( positions )

    c = kwargs.setdefault ( 'color', [0,0,0] )
    c = dvis.color.colorsequence ( c )

    for i,pos in enumerate ( positions ):
        d = pl.ravel(x[i])
        kwargs['color'] = c[i%len(c)]
        ax.add_artist (
                BoxplotArtist ( pos,
                    calculate_boxplot_stats ( d, **kwargs ),
                    offset,
                    **kwargs ) )
Beispiel #22
0
    def xsec(current_data):
        # Return x value and surface eta at this point, along y=0
        from pylab import find, ravel
        x = current_data.x
        y = current_data.y
        dy = current_data.dy
        q = current_data.q
        aux = current_data.aux

        ij = find((y <= dy / 2.) & (y > -dy / 2.))
        x_slice = ravel(x)[ij]
        gamma_slice = ravel(aux[0, :, :])[ij]
        pinf_slice = ravel(aux[1, :, :])[ij]
        rho_slice = ravel(q[0, :, :])[ij]
        momx_slice = ravel(q[1, :, :])[ij]
        momy_slice = ravel(q[2, :, :])[ij]
        ene_slice = ravel(q[3, :, :])[ij]
        P_slice = (gamma_slice -
                   1.0) * (ene_slice - 0.5 *
                           (momx_slice**2 + momy_slice**2) / rho_slice)
        P_slice = P_slice - gamma_slice * pinf_slice
        # Convert to Psi and centimeters
        P_slice = P_slice * 0.000145038 - 14.6959488
        x_slice = 100 * x_slice
        return x_slice, P_slice
Beispiel #23
0
    def xsec_s(current_data):
        # Return x value and speed at this point, along y=0
        from pylab import find, ravel, where, sqrt
        x = current_data.x
        y = current_data.y
        dy = current_data.dy
        q = current_data.q
        h = q[0, :]
        dry_tol = 0.001
        u = where(h > dry_tol, q[1, :] / h, 0.)
        v = where(h > dry_tol, q[2, :] / h, 0.)
        s = sqrt(u**2 + v**2)
        s = s / sqrt(9.81 / 0.97)  # so comparable to eta

        ij = find((y <= dy / 2.) & (y > -dy / 2.))
        x_slice = ravel(x)[ij]
        s_slice = ravel(s)[ij]
        return x_slice, s_slice
Beispiel #24
0
    def xsec_s(current_data):
        # Return x value and speed at this point, along y=0
        from pylab import find,ravel,where,sqrt
        x = current_data.x
        y = current_data.y
        dy = current_data.dy
        q = current_data.q
        h = q[0,:]
        dry_tol = 0.001
        u = where(h>dry_tol, q[1,:]/h, 0.)
        v = where(h>dry_tol, q[2,:]/h, 0.)
        s = sqrt(u**2 + v**2)
        s = s / sqrt(9.81/0.97)  # so comparable to eta

        ij = find((y <= dy/2.) & (y > -dy/2.))
        x_slice = ravel(x)[ij]
        s_slice = ravel(s)[ij]
        return x_slice, s_slice
Beispiel #25
0
def plot_contour_lines(plot_data, xy_data=None, show_regression=False, \
        show_equation=False, smooth_steps=0, num_contour_lines=10, \
        label_contours=False, line_cmap=cm.hot, fill_cmap=cm.gray,dark=True,
        graph_shape='rect', prob_axes=False, **kwargs):
    """helper plots one or more series of contour line data
    calls the initializing functions, doesn't output figure
    
    takes: plot_data, xy_data, show_regression, show_equation, smooth,
        num_contour_lines, label_contours, line_cmap, fill_cmap, graph_shape,
        and **kwargs passed on to init_graph_display.
                 
           plot_data = (x_bin, y_bin, data_matrix dot_colors)
    """
    if prob_axes:
        extent = (0, 1, 0, 1)
    else:
        a = gca()
        extent = a.get_xlim() + a.get_ylim()
    #init graph display, rectangular due to needed colorbar space
    init_graph_display(graph_shape=graph_shape, dark=dark, **kwargs)
    #plots the contour data
    for x_bin, y_bin, data in plot_data:
        orig_max = max(ravel(data))
        scaled_data = (data / orig_max * 255).astype('b')
        if smooth_steps and (Image is not None):
            orig_shape = data.shape
            im = Image.fromstring('L', data.shape, scaled_data)
            for i in range(smooth_steps):
                im = im.filter(ImageFilter.BLUR)
            new_data = fromstring(im.tostring(), 'b')
            data = reshape(new_data.astype('i') / 255.0 * orig_max, orig_shape)

        if fill_cmap is not None:
            im = imshow(data, interpolation='bicubic', extent=extent, \
                origin='lower', cmap=fill_cmap)
        result = contour(x_bin,
                         y_bin,
                         data,
                         num_contour_lines,
                         origin='lower',
                         linewidth=2,
                         extent=extent,
                         cmap=line_cmap)
        if label_contours:
            clabel(result, fmt='%1.1g')

    #add the colorbar legend to the side
    cb = colorbar()
    cb.ax.axisbg = 'black'

    if show_regression:
        equation = plot_regression_line(xy_data[0],
                                        xy_data[1],
                                        prob_axes=prob_axes)
        if show_equation:
            add_regression_equations([equation])
Beispiel #26
0
    def xsec(current_data):
        # Return x value and surface depth at this point, along y=0
        from pylab import where, ravel
        x = current_data.x
        y = ravel(current_data.y)
        dy = current_data.dy
        q = current_data.q
        frameno= str(current_data.frameno)

        ij = where((y <= dy/1.) & (y > -dy/1.))
        x_slice = ravel(x)[ij]
        ij1 = where((x_slice > 40.40) | (x_slice < 40.0))
        x_slice = x_slice[ij1]
        depth_slice = ravel(q[0, :, :])[ij]
        depth_slice = depth_slice[ij1]
        profile_arr = np.array([np.transpose(x_slice), np.transpose(depth_slice)])
        data_frame = pandas.DataFrame(profile_arr.T)
        data_frame.to_csv(frameno+'_profile.csv') 
        return x_slice, depth_slice
Beispiel #27
0
def pcolor_matrix_pylab(A, fname='pcolor_matrix_matplotlib'):
    """
    pcolor_matrix_pylab() implements a matlab-like 'pcolor' function to
    display the large elements of a matrix in pseudocolor using the Python Imaging
    Library.
    """
    try:
        import matplotlib
        matplotlib.use('Agg')
        import pylab
    except ImportError:
        if pedobj.kw['messages'] == 'verbose':
            print '[ERROR]: pyp_graphics/pcolor_matrix_pylab() was unable to import the matplotlib module!'
        logging.error('pyp_graphics/pcolor_matrix_pylab() was unable to import the matplotlib module!')
        return 0

    try:
        import numpy
        pylab.clf()
        x = pylab.arange(A.shape[0])
        X, Y = pylab.meshgrid(x,x)

        xmin = min(pylab.ravel(X))
        xmax = max(pylab.ravel(X))
        pylab.xlim(xmin, xmax)
        ymin = min(pylab.ravel(Y))
        ymax = max(pylab.ravel(Y))
        pylab.ylim(ymin, ymax)
        pylab.axis('off')

        pylab.pcolor(X, Y, pylab.transpose(A))#, shading='flat')
        pylab.clim(0.0, 1.0)
        plotfile = '%s.png' % (fname)
        myplotfile = open(plotfile,'w')
        pylab.savefig(myplotfile)
        myplotfile.close()
        return 1
    except:
        if pedobj.kw['messages'] == 'verbose':
            print '[ERROR]: pyp_graphics/pcolor_matrix_pylab() was unable to create the plot %s.' % (plotfile)
        logging.error('pyp_graphics/pcolor_matrix_pylab() was unable to create the plot %s.', (plotfile))
        return 0
Beispiel #28
0
def apply_mask(x):
    """
    Gets arrays with NaN from MAT files and applies python masked_where
    """
    f = pl.find(pl.isnan(x) == 1)
    l1, l2 = x.shape 
    x = pl.ravel(x)
    x[f] = 0
    x.shape = (l1,l2)
    x = pl.ma.masked_where(x == 0, x)
    return x
Beispiel #29
0
    def __call__(self, lon, lat, inverse=False):
        """
 Calling a Proj class instance with the arguments lon, lat will
 convert lon/lat (in degrees) to x/y native map projection 
 coordinates (in meters).  If optional keyword 'inverse' is
 True (default is False), the inverse transformation from x/y
 to lon/lat is performed.

 For cylindrical equidistant projection ('cyl'), this
 does nothing (i.e. x,y == lon,lat).

 lon,lat can be either scalar floats or N arrays.
        """
        if self.projection == "cyl":  # for cyl x,y == lon,lat
            return lon, lat
        # if inputs are numarray arrays, get shape and typecode.
        try:
            shapein = lon.shape
            lontypein = lon.typecode()
            lattypein = lat.typecode()
        except:
            shapein = False
        # make sure inputs have same shape.
        if shapein and lat.shape != shapein:
            raise ValueError, "lon, lat must be scalars or numarrays with the same shape"
        if shapein:
            x = N.ravel(lon).tolist()
            y = N.ravel(lat).tolist()
            if inverse:
                outx, outy = self._inv(x, y)
            else:
                outx, outy = self._fwd(x, y)
            outx = N.reshape(N.array(outx, lontypein), shapein)
            outy = N.reshape(N.array(outy, lattypein), shapein)
        else:
            if inverse:
                outx, outy = self._inv(lon, lat)
            else:
                outx, outy = self._fwd(lon, lat)
        return outx, outy
Beispiel #30
0
    def __call__(self, lon, lat, inverse=False):
        """
 Calling a Proj class instance with the arguments lon, lat will
 convert lon/lat (in degrees) to x/y native map projection 
 coordinates (in meters).  If optional keyword 'inverse' is
 True (default is False), the inverse transformation from x/y
 to lon/lat is performed.

 For cylindrical equidistant projection ('cyl'), this
 does nothing (i.e. x,y == lon,lat).

 lon,lat can be either scalar floats or N arrays.
        """
        if self.projection == 'cyl':  # for cyl x,y == lon,lat
            return lon, lat
        # if inputs are numarray arrays, get shape and typecode.
        try:
            shapein = lon.shape
            lontypein = lon.typecode()
            lattypein = lat.typecode()
        except:
            shapein = False
        # make sure inputs have same shape.
        if shapein and lat.shape != shapein:
            raise ValueError, 'lon, lat must be scalars or numarrays with the same shape'
        if shapein:
            x = N.ravel(lon).tolist()
            y = N.ravel(lat).tolist()
            if inverse:
                outx, outy = self._inv(x, y)
            else:
                outx, outy = self._fwd(x, y)
            outx = N.reshape(N.array(outx, lontypein), shapein)
            outy = N.reshape(N.array(outy, lattypein), shapein)
        else:
            if inverse:
                outx, outy = self._inv(lon, lat)
            else:
                outx, outy = self._fwd(lon, lat)
        return outx, outy
Beispiel #31
0
def plot_contour_lines(plot_data, xy_data=None, show_regression=False, \
        show_equation=False, smooth_steps=0, num_contour_lines=10, \
        label_contours=False, line_cmap=cm.hot, fill_cmap=cm.gray,dark=True,
        graph_shape='rect', prob_axes=False, **kwargs):
    """helper plots one or more series of contour line data
    calls the initializing functions, doesn't output figure
    
    takes: plot_data, xy_data, show_regression, show_equation, smooth,
        num_contour_lines, label_contours, line_cmap, fill_cmap, graph_shape,
        and **kwargs passed on to init_graph_display.
                 
           plot_data = (x_bin, y_bin, data_matrix dot_colors)
    """
    if prob_axes:
        extent = (0,1,0,1)
    else:
        a = gca()
        extent = a.get_xlim()+a.get_ylim()
    #init graph display, rectangular due to needed colorbar space
    init_graph_display(graph_shape=graph_shape,
        dark=dark, **kwargs)
    #plots the contour data
    for x_bin,y_bin,data in plot_data:
        orig_max = max(ravel(data))
        scaled_data = (data/orig_max*255).astype('b')
        if smooth_steps and (Image is not None):
            orig_shape = data.shape
            im = Image.fromstring('L', data.shape, scaled_data)
            for i in range(smooth_steps):
                im = im.filter(ImageFilter.BLUR)
            new_data = fromstring(im.tostring(), 'b')
            data = reshape(new_data.astype('i')/255.0 * orig_max, orig_shape)
        
        if fill_cmap is not None:
            im = imshow(data, interpolation='bicubic', extent=extent, \
                origin='lower', cmap=fill_cmap)
        result=contour(x_bin,y_bin,data, num_contour_lines,
                              origin='lower',linewidth=2,
                              extent=extent, cmap=line_cmap)
        if label_contours:
            clabel(result, fmt='%1.1g')

    #add the colorbar legend to the side
    cb = colorbar()
    cb.ax.axisbg = 'black'

    if show_regression:
        equation=plot_regression_line(xy_data[0],xy_data[1],prob_axes=prob_axes)
        if show_equation:
            add_regression_equations([equation])
Beispiel #32
0
def describe_vars(d):
    m = mc.Model(d)

    df = pandas.DataFrame(columns=["type", "value", "logp"], index=[n.__name__ for n in m.nodes], dtype=object)
    for n in m.nodes:
        k = n.__name__
        df.ix[k, "type"] = type(n).__name__

        if hasattr(n, "value"):
            rav = pl.ravel(n.value)
            if len(rav) == 1:
                df.ix[k, "value"] = n.value
            elif len(rav) > 1:
                df.ix[k, "value"] = "%.1f, ..." % rav[0]

        df.ix[k, "logp"] = getattr(n, "logp", pl.nan)

    return df.sort("logp")
Beispiel #33
0
def describe_vars(d):
    m = mc.Model(d)

    df = pd.DataFrame(columns=['type', 'value', 'logp'],
                      index=[n.__name__ for n in m.nodes],
                      dtype=object)
    for n in m.nodes:
        k = n.__name__
        df.ix[k, 'type'] = type(n).__name__

        if hasattr(n, 'value'):
            rav = pl.ravel(n.value)
            if len(rav) == 1:
                df.ix[k, 'value'] = n.value
            elif len(rav) > 1:
                df.ix[k, 'value'] = '%.1f, ...' % rav[0]

        df.ix[k, 'logp'] = getattr(n, 'logp', pl.nan)

    return df.sort('logp')
Beispiel #34
0
def describe_vars(d):
    m = mc.Model(d)

    df = pd.DataFrame(columns=['type', 'value', 'logp'],
                          index=[n.__name__ for n in m.nodes],
                          dtype=object)
    for n in m.nodes:
        k = n.__name__
        df.ix[k, 'type'] = type(n).__name__

        if hasattr(n, 'value'):
            rav = pl.ravel(n.value)
            if len(rav) == 1:
                df.ix[k, 'value'] = n.value
            elif len(rav) > 1:
                df.ix[k, 'value'] = '%.1f, ...' % rav[0]

        df.ix[k, 'logp'] = getattr(n, 'logp', pl.nan)

    return df.sort('logp')
Beispiel #35
0
def norm_hist_bins(y, bins=10, normed='height'):
    """Just like the matplotlib mlab.hist, but can normalize by height.

    normed can be 'area' (produces matplotlib behavior, area is 1), 
    any False value (no normalization), or any True value (normalization).

    Original docs from matplotlib:

    Return the histogram of y with bins equally sized bins.  If bins
    is an array, use the bins.  Return value is
    (n,x) where n is the count for each bin in x

    If normed is False, return the counts in the first element of the
    return tuple.  If normed is True, return the probability density
    n/(len(y)*dbin)
    
    If y has rank>1, it will be raveled
    Credits: the Numeric 22 documentation
    """
    y = asarray(y)
    if len(y.shape)>1: y = ravel(y)

    if not iterable(bins):
        ymin, ymax = min(y), max(y)
        if ymin==ymax:
            ymin -= 0.5
            ymax += 0.5

        if bins==1: bins=ymax
        dy = (ymax-ymin)/bins
        bins = ymin + dy*arange(bins)
    n = searchsorted(sort(y), bins)
    n = diff(concatenate([n, [len(y)]]))
    if normed:
        if normed == 'area':
            db = bins[1]-bins[0]
        else:
            db = 1.0
        return 1/(len(y)*db)*n, bins
    else:
        return n, bins
Beispiel #36
0
def norm_hist_bins(y, bins=10, normed='height'):
    """Just like the matplotlib mlab.hist, but can normalize by height.

    normed can be 'area' (produces matplotlib behavior, area is 1), 
    any False value (no normalization), or any True value (normalization).

    Original docs from matplotlib:

    Return the histogram of y with bins equally sized bins.  If bins
    is an array, use the bins.  Return value is
    (n,x) where n is the count for each bin in x

    If normed is False, return the counts in the first element of the
    return tuple.  If normed is True, return the probability density
    n/(len(y)*dbin)
    
    If y has rank>1, it will be raveled
    Credits: the Numeric 22 documentation
    """
    y = asarray(y)
    if len(y.shape)>1: y = ravel(y)

    if not iterable(bins):
        ymin, ymax = min(y), max(y)
        if ymin==ymax:
            ymin -= 0.5
            ymax += 0.5

        if bins==1: bins=ymax
        dy = (ymax-ymin)/bins
        bins = ymin + dy*arange(bins)
    n = searchsorted(sort(y), bins)
    n = diff(concatenate([n, [len(y)]]))
    if normed:
        if normed == 'area':
            db = bins[1]-bins[0]
        else:
            db = 1.0
        return 1/(len(y)*db)*n, bins
    else:
        return n, bins
    def xsec(current_data):
        # Return x value and surface eta at this point, along y=0
        from pylab import find,ravel
        x = current_data.x
        y = current_data.y
        dy = current_data.dy
        q = current_data.q
        aux = current_data.aux

        ij = find((y <= dy/2.) & (y > -dy/2.))
        x_slice = ravel(x)[ij]
        gamma_slice = ravel(aux[0,:,:])[ij]
        pinf_slice = ravel(aux[1,:,:])[ij]
        rho_slice = ravel(q[0,:,:])[ij]
        momx_slice = ravel(q[1,:,:])[ij]
        momy_slice = ravel(q[2,:,:])[ij]
        ene_slice = ravel(q[3,:,:])[ij]
        P_slice = (gamma_slice - 1.0)*(ene_slice - 0.5*(momx_slice**2 + momy_slice**2)/rho_slice)
        P_slice = P_slice - gamma_slice*pinf_slice
        # Convert to Psi and centimeters
        P_slice = P_slice*0.000145038 - 14.6959488
        x_slice = 100*x_slice
        return x_slice, P_slice
Beispiel #38
0
def interp(datain,lonsin,latsin,lonsout,latsout,checkbounds=False,mode='nearest',cval=0.0,order=3):
    """
 dataout = interp(datain,lonsin,latsin,lonsout,latsout,mode='constant',cval=0.0,order=3)

 interpolate data (datain) on a rectilinear lat/lon grid (with lons=lonsin
 lats=latsin) to a grid with lons=lonsout, lats=latsout.

 datain is a rank-2 array with 1st dimension corresponding to longitude,
 2nd dimension latitude.

 lonsin, latsin are rank-1 Numeric arrays containing longitudes and latitudes
 of datain grid in increasing order (i.e. from Greenwich meridian eastward, and
 South Pole northward)

 lonsout, latsout are rank-2 Numeric arrays containing lons and lats of desired
 output grid (typically a native map projection grid).

 If checkbounds=True, values of lonsout and latsout are checked to see that
 they lie within the range specified by lonsin and latsin.  Default is
 False, and values outside the borders are handled in the manner described
 by the 'mode' parameter (default mode='nearest', which means the nearest
 boundary value is used). See section 20.2 of the numarray docs for 
 information on the 'mode' keyword.

 See numarray.nd_image.map_coordinates documentation for information on
 the other optional keyword parameters.  The order keyword can be 0 
 for nearest neighbor interpolation (nd_image only allows 1-6) - if
 order=0 bounds checking is done even if checkbounds=False.
    """
    # lonsin and latsin must be monotonically increasing.
    if lonsin[-1]-lonsin[0] < 0 or latsin[-1]-latsin[0] < 0:
        raise ValueError, 'lonsin and latsin must be increasing!'
    # optionally, check that lonsout,latsout are 
    # within region defined by lonsin,latsin.
    # (this check is always done if nearest neighbor 
    # interpolation (order=0) requested).
    if checkbounds or order == 0:
        if min(pylab.ravel(lonsout)) < min(lonsin) or \
           max(pylab.ravel(lonsout)) > max(lonsin) or \
           min(pylab.ravel(latsout)) < min(latsin) or \
           max(pylab.ravel(latsout)) > max(latsin):
            raise ValueError, 'latsout or lonsout outside range of latsin or lonsin'
    # compute grid coordinates of output grid.
    delon = lonsin[1:]-lonsin[0:-1]
    delat = latsin[1:]-latsin[0:-1]
    if max(delat)-min(delat) < 1.e-4 and max(delon)-min(delon) < 1.e-4:
        # regular input grid.
        xcoords = (len(lonsin)-1)*(lonsout-lonsin[0])/(lonsin[-1]-lonsin[0])
        ycoords = (len(latsin)-1)*(latsout-latsin[0])/(latsin[-1]-latsin[0])
    else:
        # irregular (but still rectilinear) input grid.
        lonsoutflat = pylab.ravel(lonsout)
        latsoutflat = pylab.ravel(latsout)
        ix = pylab.searchsorted(lonsin,lonsoutflat)-1
        iy = pylab.searchsorted(latsin,latsoutflat)-1
        xcoords = pylab.zeros(ix.shape,'f')
        ycoords = pylab.zeros(iy.shape,'f')
        for n,i in enumerate(ix):
            if i < 0:
                xcoords[n] = -1 # outside of range on lonsin (lower end)
            elif i >= len(lonsin)-1:
                xcoords[n] = len(lonsin) # outside range on upper end.
            else:
                xcoords[n] = float(i)+(lonsoutflat[n]-lonsin[i])/(lonsin[i+1]-lonsin[i])
        xcoords = pylab.reshape(xcoords,lonsout.shape)
        for m,j in enumerate(iy):
            if j < 0:
                ycoords[m] = -1 # outside of range of latsin (on lower end)
            elif j >= len(latsin)-1:
                ycoords[m] = len(latsin) # outside range on upper end
            else:
                ycoords[m] = float(j)+(latsoutflat[m]-latsin[j])/(latsin[j+1]-latsin[j])
        ycoords = pylab.reshape(ycoords,latsout.shape)
    coords = [ycoords,xcoords]
    # interpolate to output grid using numarray.nd_image spline filter.
    if order:
        return nd_image.map_coordinates(datain,coords,mode=mode,cval=cval,order=order)
    else:
        # nearest neighbor interpolation if order=0.
        # uses index arrays, so first convert to numarray.
        datatmp = pylab.array(datain,datain.typecode())
        xi = pylab.around(xcoords).astype('i')
        yi = pylab.around(ycoords).astype('i')
        return datatmp[yi,xi]
Beispiel #39
0
w = 0.4
h = 0.22
ax = []
images = []
vmin = 1e40
vmax = -1e40
for i in range(Nr):
    for j in range(Nc):
        pos = [0.075 + j*1.1*w, 0.18 + i*1.2*h, w, h]
        a = fig.add_axes(pos)
        if i > 0:
            a.set_xticklabels([])
        # Make some fake data with a range that varies
        # somewhat from one plot to the next.
        data =((1+i+j)/10.0)*pylab.rand(10,20)*1e-6
        dd = pylab.ravel(data)
        # Manually find the min and max of all colors for
        # use in setting the color scale.
        vmin = min(vmin, amin(dd))
        vmax = max(vmax, amax(dd))
        images.append(a.imshow(data, cmap=cmap))

        ax.append(a)

# Set the first image as the master, with all the others
# observing it for changes in cmap or norm.
norm = colors.normalize(vmin=vmin, vmax=vmax)
for i, im in enumerate(images):
    im.set_norm(norm)
    if i > 0:
        images[0].add_observer(im)
Beispiel #40
0
    def draw_arrow(pair, alpha=alpha, ec=ec, labelcolor=labelcolor):
        #set the length of the arrow
        if display == 'length':
            length = max_head_length+(max_arrow_length-max_head_length)*\
                data[pair]/sf
        else:
            length = max_arrow_length
        #set the transparency of the arrow
        if display == 'alph':
            alpha = min(data[pair] / sf, alpha)
        else:
            alpha = alpha
        #set the width of the arrow
        if display == 'width':
            scale = data[pair] / sf
            width = max_arrow_width * scale
            head_width = max_head_width * scale
            head_length = max_head_length * scale
        else:
            width = max_arrow_width
            head_width = max_head_width
            head_length = max_head_length

        fc = colors[pair]
        ec = ec or fc

        x_scale, y_scale = deltas[pair]
        x_pos, y_pos = positions[pair]
        arrow(ax, x_pos, y_pos, x_scale*length, y_scale*length, \
            fc=fc, ec=ec, alpha=alpha, width=width, head_width=head_width, \
            head_length=head_length, **arrow_params)

        #figure out coordinates for text
        #if drawing relative to base: x and y are same as for arrow
        #dx and dy are one arrow width left and up
        #need to rotate based on direction of arrow, use x_scale and y_scale
        #as sin x and cos x?
        sx, cx = y_scale, x_scale

        alo = arrow_label_offset = 3.5 * max_arrow_width

        where = label_positions[pair]
        if where == 'left':
            orig_position = array([[alo, alo]])
        elif where == 'absolute':
            orig_position = array([[max_arrow_length / 2.0, alo]])
        elif where == 'right':
            orig_position = array([[length - alo, alo]])
        elif where == 'center':
            orig_position = array([[length / 2.0, alo]])
        else:
            raise ValueError, "Got unknown position parameter %s" % where

        M = array([[cx, sx], [-sx, cx]])
        coords = dot(orig_position, M) + [[x_pos, y_pos]]
        x, y = ravel(coords)
        orig_label = rate_labels[pair]
        label = '$%s_{_{\mathrm{%s}}}$' % (orig_label[0], orig_label[1:])

        text(x, y, label, size=label_text_size, ha='center', va='center', \
            color=labelcolor or fc)
Beispiel #41
0
# add cyclic points
slp = p.zeros((slpin.shape[0], slpin.shape[1], slpin.shape[2] + 1), p.Float64)
slp[:, :, 0:-1] = slpin
slp[:, :, -1] = slpin[:, :, 0]
u = p.zeros((uin.shape[0], uin.shape[1], uin.shape[2] + 1), p.Float64)
u[:, :, 0:-1] = uin
u[:, :, -1] = uin[:, :, 0]
v = p.zeros((vin.shape[0], vin.shape[1], vin.shape[2] + 1), p.Float64)
v[:, :, 0:-1] = vin
v[:, :, -1] = vin[:, :, 0]
longitudes.append(360.)
longitudes = p.array(longitudes)
# make 2-d grid of lons, lats
lons, lats = p.meshgrid(longitudes, latitudes)
print 'min/max slp,u,v'
print min(p.ravel(slp)), max(p.ravel(slp))
print min(p.ravel(uin)), max(p.ravel(uin))
print min(p.ravel(vin)), max(p.ravel(vin))
print 'dates'
print datelabels
# make orthographic basemap.
m = Basemap(resolution='c', projection='ortho', lat_0=60., lon_0=-60.)
p.ion()  # interactive mode on.
uin = p.squeeze(udata[ntime1:ntime2 + 1, 0, :, :])
vin = p.squeeze(vdata[ntime1:ntime2 + 1, 0, :, :])
datelabels = dates[ntime1:ntime2 + 1]
# make orthographic basemap.
m = Basemap(resolution='c', projection='ortho', lat_0=60., lon_0=-60.)
p.ion()  # interactive mode on.
# create figure, add axes (leaving room for colorbar on right)
fig = p.figure()
Beispiel #42
0
#################################################
fig1 = plt.figure(1,figsize=(15,8),facecolor='w')

###################################################################################

oe2 = sp.loadmat('/home/rsoutelino/prod/grl_msc/proc/psiobs_OEII.mat')
psiob = oe2.pop('psiob')
xgi = oe2.pop('xgi'); ygi = oe2.pop('ygi');
uo = oe2.pop('uo'); vo = oe2.pop('vo');  

s = 2;

# masking 
f = pl.find(pl.isnan(psiob) == 1); 
a, b = psiob.shape; 
psiob = pl.ravel(psiob); uo = pl.ravel(uo); vo = pl.ravel(vo);

psiob[f] = 0; uo[f] = 0; vo[f] = 0;
psiob.shape = (a,b); uo.shape = (a,b); vo.shape = (a,b)
psiob = pl.ma.masked_where(psiob == 0, psiob)
uo = pl.ma.masked_where(uo == 0, uo)
vo = pl.ma.masked_where(vo == 0, vo)

g = 1

p1 = plt.subplot(131)
#con = m.contourf(xgi,ygi,psigo,scale,linewidth=0,alpha = 0.5); 
m.quiver(xgi[::g,::g], ygi[::g,::g], uo[::g,::g]*s, vo[::g,::g]*s, scale=10);
m.contourf(xb,yb,zb,colors=('0.9'),linewidth=0);
m.drawcoastlines(zorder=5)
m.drawcountries(zorder=4)
Beispiel #43
0
    ulcornery = dy * (ny - 1)
    urcornerx = dx * (nx - 1)
    urcornery = dy * (ny - 1)
    llcornerlon, llcornerlat = awips221(llcornerx, llcornery, inverse=True)
    lrcornerlon, lrcornerlat = awips221(lrcornerx, lrcornery, inverse=True)
    urcornerlon, urcornerlat = awips221(urcornerx, urcornery, inverse=True)
    ulcornerlon, ulcornerlat = awips221(ulcornerx, ulcornery, inverse=True)
    print '4 corners of AWIPS grid 221:'
    print llcornerlon, llcornerlat
    print lrcornerlon, lrcornerlat
    print urcornerlon, urcornerlat
    print ulcornerlon, ulcornerlat
    print 'from GRIB docs'
    print '(see http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html)'
    print '   -145.5  1.0'
    print '   -68.318 0.897'
    print '   -2.566 46.352'
    print '   148.639 46.635'
    # compute lons and lats for the whole AWIPS grid 221 (377x249).
    import time
    t1 = time.clock()
    lons, lats = awips221.makegrid(nx, ny)
    t2 = time.clock()
    print 'compute lats/lons for all points on AWIPS 221 grid (%sx%s)' % (nx,
                                                                          ny)
    print 'max/min lons'
    print min(N.ravel(lons)), max(N.ravel(lons))
    print 'max/min lats'
    print min(N.ravel(lats)), max(N.ravel(lats))
    print 'took', t2 - t1, 'secs'
Beispiel #44
0
def draw(board):
    return all(ravel(board != '.'))
Beispiel #45
0
def interp(datain,lonsin,latsin,lonsout,latsout,checkbounds=False,mode='nearest',cval=0.0,order=3):
    """
 dataout = interp(datain,lonsin,latsin,lonsout,latsout,mode='constant',cval=0.0,order=3)

 interpolate data (datain) on a rectilinear lat/lon grid (with lons=lonsin
 lats=latsin) to a grid with lons=lonsout, lats=latsout.

 datain is a rank-2 array with 1st dimension corresponding to longitude,
 2nd dimension latitude.

 lonsin, latsin are rank-1 arrays containing longitudes and latitudes
 of datain grid in increasing order (i.e. from Greenwich meridian eastward, and
 South Pole northward)

 lonsout, latsout are rank-2 arrays containing lons and lats of desired
 output grid (typically a native map projection grid).

 If checkbounds=True, values of lonsout and latsout are checked to see that
 they lie within the range specified by lonsin and latsin.  Default is
 False, and values outside the borders are handled in the manner described
 by the 'mode' parameter (default mode='nearest', which means the nearest
 boundary value is used). See section 20.2 of the numarray docs for 
 information on the 'mode' keyword.

 See numarray.nd_image.map_coordinates documentation for information on
 the other optional keyword parameters.  The order keyword can be 0 
 for nearest neighbor interpolation (nd_image only allows 1-6) - if
 order=0 bounds checking is done even if checkbounds=False.
    """
    # lonsin and latsin must be monotonically increasing.
    if lonsin[-1]-lonsin[0] < 0 or latsin[-1]-latsin[0] < 0:
        raise ValueError, 'lonsin and latsin must be increasing!'
    # optionally, check that lonsout,latsout are 
    # within region defined by lonsin,latsin.
    # (this check is always done if nearest neighbor 
    # interpolation (order=0) requested).
    if checkbounds or order == 0:
        if min(pylab.ravel(lonsout)) < min(lonsin) or \
           max(pylab.ravel(lonsout)) > max(lonsin) or \
           min(pylab.ravel(latsout)) < min(latsin) or \
           max(pylab.ravel(latsout)) > max(latsin):
            raise ValueError, 'latsout or lonsout outside range of latsin or lonsin'
    # compute grid coordinates of output grid.
    delon = lonsin[1:]-lonsin[0:-1]
    delat = latsin[1:]-latsin[0:-1]
    if max(delat)-min(delat) < 1.e-4 and max(delon)-min(delon) < 1.e-4:
        # regular input grid.
        xcoords = (len(lonsin)-1)*(lonsout-lonsin[0])/(lonsin[-1]-lonsin[0])
        ycoords = (len(latsin)-1)*(latsout-latsin[0])/(latsin[-1]-latsin[0])
    else:
        # irregular (but still rectilinear) input grid.
        lonsoutflat = pylab.ravel(lonsout)
        latsoutflat = pylab.ravel(latsout)
        ix = pylab.searchsorted(lonsin,lonsoutflat)-1
        iy = pylab.searchsorted(latsin,latsoutflat)-1
        xcoords = pylab.zeros(ix.shape,'f')
        ycoords = pylab.zeros(iy.shape,'f')
        for n,i in enumerate(ix):
            if i < 0:
                xcoords[n] = -1 # outside of range on lonsin (lower end)
            elif i >= len(lonsin)-1:
                xcoords[n] = len(lonsin) # outside range on upper end.
            else:
                xcoords[n] = float(i)+(lonsoutflat[n]-lonsin[i])/(lonsin[i+1]-lonsin[i])
        xcoords = pylab.reshape(xcoords,lonsout.shape)
        for m,j in enumerate(iy):
            if j < 0:
                ycoords[m] = -1 # outside of range of latsin (on lower end)
            elif j >= len(latsin)-1:
                ycoords[m] = len(latsin) # outside range on upper end
            else:
                ycoords[m] = float(j)+(latsoutflat[m]-latsin[j])/(latsin[j+1]-latsin[j])
        ycoords = pylab.reshape(ycoords,latsout.shape)
    coords = [ycoords,xcoords]
    # interpolate to output grid using numarray.nd_image spline filter.
    if order:
        return nd_image.map_coordinates(datain,coords,mode=mode,cval=cval,order=order)
    else:
        # nearest neighbor interpolation if order=0.
        # uses index arrays, so first convert to numarray.
        datatmp = pylab.array(datain,datain.typecode())
        xi = pylab.around(xcoords).astype('i')
        yi = pylab.around(ycoords).astype('i')
        return datatmp[yi,xi]
Beispiel #46
0
# parallels/meridians

# illustrates special-case polar-centric projections.

from matplotlib.toolkits.basemap import Basemap
from pylab import title, colorbar, show, axes, cm, load, arange, \
                  figure, ravel, meshgrid

# read in topo data (on a regular lat/lon grid)
# longitudes go from 20 to 380.
etopo = load('etopo20data.gz')
lons = load('etopo20lons.gz')
lats = load('etopo20lats.gz')

print 'min/max etopo20 data:'
print min(ravel(etopo)),max(ravel(etopo))

# these are the 4 polar projections
projs = ['laea','stere','aeqd','ortho'] # short names
# long names
projnames = ['Lambert Azimuthal Equal Area','Stereographic','Azimuthal Equidistant','Orthographic']
# loop over hemispheres, make a 4-panel plot for each hemisphere
# showing all four polar projections.
for hem in ['North','South']:
    if hem == 'South':
        lon_0 = 130.
        lon_0_ortho = lon_0 - 180.
        lat_0 = -90.
        bounding_lat = -20.
    elif hem == 'North':
        lon_0 = -90.
Beispiel #47
0
from pylab import show,arange,draw,figure,load,ravel,cm,axes,\
                  colorbar,title,gca,pi,meshgrid
import matplotlib.colors as colors

# read in topo data (on a regular lat/lon grid)
# longitudes go from 20 to 380.
topodatin = load('etopo20data.gz')
lonsin = load('etopo20lons.gz')
latsin = load('etopo20lats.gz')

# shift data so lons go from -180 to 180 instead of 20 to 380.
topoin, lons = shiftgrid(180., topodatin, lonsin, start=False)
lats = latsin

print 'min/max etopo20 data:'
print min(ravel(topoin)), max(ravel(topoin))

# create new figure
fig = figure()
# setup cylindrical equidistant map projection (global domain).
m = Basemap(llcrnrlon=-180.,llcrnrlat=-90,urcrnrlon=180.,urcrnrlat=90.,\
            resolution='c',area_thresh=10000.,projection='cyl')
ax = fig.add_axes([0.1, 0.1, 0.7, 0.7])
# plot image over map.
im = m.imshow(topoin, cm.jet)
l, b, w, h = ax.get_position()
cax = axes([l + w + 0.05, b, 0.05, h])  # setup colorbar axes.
colorbar(cax=cax)  # draw colorbar
axes(ax)  # make the original axes current again
m.drawcoastlines()
#m.drawcountries()
Beispiel #48
0
dat = sp.loadmat('/home/rsoutelino/prod/grl_msc/proc/aviso_omar.mat')
mag = dat.pop('mag')
lon = dat.pop('lon')
lat = dat.pop('lat')
um = dat.pop('um')
vm = dat.pop('vm')
tt = dat.pop('tt')
Vab = dat.pop('Vab')
Vcf = dat.pop('Vcf')

lon, lat = m(lon, lat)

# masking
f = pl.find(pl.isnan(mag) == 1)
a, b = mag.shape
mag = pl.ravel(mag)
um = pl.ravel(um)
vm = pl.ravel(vm)
mag[f] = 0
um[f] = 0
vm[f] = 0
mag.shape = (a, b)
um.shape = (a, b)
vm.shape = (a, b)
mag = pl.ma.masked_where(mag == 0, mag)
um = pl.ma.masked_where(um == 0, um)
vm = pl.ma.masked_where(vm == 0, vm)

print " "
print "Loading etopo data ....... "
etopo = sp.loadmat('/home/rsoutelino/prod/grl_msc/proc/etopo2_atlsul.mat')
Beispiel #49
0
    ulcornery = dy * (ny - 1)
    urcornerx = dx * (nx - 1)
    urcornery = dy * (ny - 1)
    llcornerlon, llcornerlat = awips221(llcornerx, llcornery, inverse=True)
    lrcornerlon, lrcornerlat = awips221(lrcornerx, lrcornery, inverse=True)
    urcornerlon, urcornerlat = awips221(urcornerx, urcornery, inverse=True)
    ulcornerlon, ulcornerlat = awips221(ulcornerx, ulcornery, inverse=True)
    print "4 corners of AWIPS grid 221:"
    print llcornerlon, llcornerlat
    print lrcornerlon, lrcornerlat
    print urcornerlon, urcornerlat
    print ulcornerlon, ulcornerlat
    print "from GRIB docs"
    print "(see http://www.nco.ncep.noaa.gov/pmb/docs/on388/tableb.html)"
    print "   -145.5  1.0"
    print "   -68.318 0.897"
    print "   -2.566 46.352"
    print "   148.639 46.635"
    # compute lons and lats for the whole AWIPS grid 221 (377x249).
    import time

    t1 = time.clock()
    lons, lats = awips221.makegrid(nx, ny)
    t2 = time.clock()
    print "compute lats/lons for all points on AWIPS 221 grid (%sx%s)" % (nx, ny)
    print "max/min lons"
    print min(N.ravel(lons)), max(N.ravel(lons))
    print "max/min lats"
    print min(N.ravel(lats)), max(N.ravel(lats))
    print "took", t2 - t1, "secs"
Beispiel #50
0
#################################################
fig1 = plt.figure(1,figsize=(15,8),facecolor='w')

###################################################################################

oe1 = sp.loadmat('/home/rsoutelino/prod/grl_msc/proc/psigeo_OEI.mat')
psigo = oe1.pop('psigo')
xgi = oe1.pop('xgi'); ygi = oe1.pop('ygi');
xgi,ygi = m(xgi,ygi)
uctd = oe1.pop('uctd'); vctd = oe1.pop('vctd');  

# masking 
f = pl.find(pl.isnan(psigo) == 1); 
a, b = psigo.shape; 
psigo = pl.ravel(psigo); uctd = pl.ravel(uctd); vctd = pl.ravel(vctd);

psigo[f] = 0; uctd[f] = 0; vctd[f] = 0;
psigo.shape = (a,b); uctd.shape = (a,b); vctd.shape = (a,b)
psigo = pl.ma.masked_where(psigo == 0, psigo)
uctd = pl.ma.masked_where(uctd == 0, uctd)
vctd = pl.ma.masked_where(vctd == 0, vctd)

g = 1

p1 = plt.subplot(131)
#con = m.contourf(xgi,ygi,psigo,scale,linewidth=0,alpha = 0.5); 
m.quiver(xgi[::g,::g],ygi[::g,::g],uctd[::g,::g]*s,vctd[::g,::g]*s,scale=10);
m.contourf(xb,yb,zb,colors=('0.9'),linewidth=0);
m.drawcoastlines(zorder=5)
m.drawcountries(zorder=4)
Beispiel #51
0
    def draw_arrow(pair, alpha=alpha, ec=ec, labelcolor=labelcolor):
        #set the length of the arrow 
        if display == 'length':
            length = max_head_length+(max_arrow_length-max_head_length)*\
                data[pair]/sf
        else:
            length = max_arrow_length
        #set the transparency of the arrow
        if display == 'alph':
            alpha = min(data[pair]/sf, alpha)
        else:
            alpha=alpha
        #set the width of the arrow
        if display == 'width':
            scale = data[pair]/sf
            width = max_arrow_width*scale
            head_width = max_head_width*scale
            head_length = max_head_length*scale
        else:
            width = max_arrow_width
            head_width = max_head_width
            head_length = max_head_length

        fc = colors[pair]
        ec = ec or fc

        x_scale, y_scale = deltas[pair]
        x_pos, y_pos = positions[pair]
        arrow(ax, x_pos, y_pos, x_scale*length, y_scale*length, \
            fc=fc, ec=ec, alpha=alpha, width=width, head_width=head_width, \
            head_length=head_length, **arrow_params)

        #figure out coordinates for text
        #if drawing relative to base: x and y are same as for arrow
        #dx and dy are one arrow width left and up
        #need to rotate based on direction of arrow, use x_scale and y_scale
        #as sin x and cos x?
        sx, cx = y_scale, x_scale

        alo = arrow_label_offset = 3.5*max_arrow_width

        where = label_positions[pair]
        if where == 'left':
            orig_position = array([[alo, alo]])
        elif where == 'absolute':
            orig_position = array([[max_arrow_length/2.0, alo]])
        elif where == 'right':
            orig_position = array([[length-alo, alo]])
        elif where == 'center':
            orig_position = array([[length/2.0, alo]])
        else:
            raise ValueError, "Got unknown position parameter %s" % where
            

        
        M = array([[cx, sx],[-sx,cx]])
        coords = dot(orig_position, M) + [[x_pos, y_pos]]
        x, y = ravel(coords)
        orig_label = rate_labels[pair]
        label = '$%s_{_{\mathrm{%s}}}$' % (orig_label[0], orig_label[1:])
   
        text(x, y, label, size=label_text_size, ha='center', va='center', \
            color=labelcolor or fc)
Beispiel #52
0
slpin = 0.01*p.squeeze(slpdata[ntime1:ntime2+1,:,:])
uin = p.squeeze(udata[ntime1:ntime2+1,0,:,:]) 
vin = p.squeeze(vdata[ntime1:ntime2+1,0,:,:]) 
datelabels = dates[ntime1:ntime2+1]
# add cyclic points
slp = p.zeros((slpin.shape[0],slpin.shape[1],slpin.shape[2]+1),p.Float64)
slp[:,:,0:-1] = slpin; slp[:,:,-1] = slpin[:,:,0]
u = p.zeros((uin.shape[0],uin.shape[1],uin.shape[2]+1),p.Float64)
u[:,:,0:-1] = uin; u[:,:,-1] = uin[:,:,0]
v = p.zeros((vin.shape[0],vin.shape[1],vin.shape[2]+1),p.Float64)
v[:,:,0:-1] = vin; v[:,:,-1] = vin[:,:,0]
longitudes.append(360.); longitudes = p.array(longitudes)
# make 2-d grid of lons, lats
lons, lats = p.meshgrid(longitudes,latitudes)
print 'min/max slp,u,v'
print min(p.ravel(slp)),max(p.ravel(slp))
print min(p.ravel(uin)),max(p.ravel(uin))
print min(p.ravel(vin)),max(p.ravel(vin))
print 'dates'
print datelabels
# make orthographic basemap.
m = Basemap(resolution='c',projection='ortho',lat_0=60.,lon_0=-60.)
p.ion() # interactive mode on.
uin = p.squeeze(udata[ntime1:ntime2+1,0,:,:]) 
vin = p.squeeze(vdata[ntime1:ntime2+1,0,:,:]) 
datelabels = dates[ntime1:ntime2+1]
# make orthographic basemap.
m = Basemap(resolution='c',projection='ortho',lat_0=60.,lon_0=-60.)
p.ion() # interactive mode on.
# create figure, add axes (leaving room for colorbar on right)
fig = p.figure()
Beispiel #53
0
###################################################################################

oe2 = sp.loadmat('/home/rsoutelino/prod/grl_msc/proc/psiobs_OEII.mat')
psiob = oe2.pop('psiob')
xgi = oe2.pop('xgi')
ygi = oe2.pop('ygi')
uo = oe2.pop('uo')
vo = oe2.pop('vo')

s = 2

# masking
f = pl.find(pl.isnan(psiob) == 1)
a, b = psiob.shape
psiob = pl.ravel(psiob)
uo = pl.ravel(uo)
vo = pl.ravel(vo)

psiob[f] = 0
uo[f] = 0
vo[f] = 0
psiob.shape = (a, b)
uo.shape = (a, b)
vo.shape = (a, b)
psiob = pl.ma.masked_where(psiob == 0, psiob)
uo = pl.ma.masked_where(uo == 0, uo)
vo = pl.ma.masked_where(vo == 0, vo)

g = 1
Beispiel #54
0
# parallels/meridians

# illustrates special-case polar-centric projections.

from matplotlib.toolkits.basemap import Basemap
from pylab import title, colorbar, show, axes, cm, load, arange, \
                  figure, ravel, meshgrid

# read in topo data (on a regular lat/lon grid)
# longitudes go from 20 to 380.
etopo = load('etopo20data.gz')
lons = load('etopo20lons.gz')
lats = load('etopo20lats.gz')

print 'min/max etopo20 data:'
print min(ravel(etopo)), max(ravel(etopo))

# these are the 4 polar projections
projs = ['laea', 'stere', 'aeqd', 'ortho']  # short names
# long names
projnames = [
    'Lambert Azimuthal Equal Area', 'Stereographic', 'Azimuthal Equidistant',
    'Orthographic'
]
# loop over hemispheres, make a 4-panel plot for each hemisphere
# showing all four polar projections.
for hem in ['North', 'South']:
    if hem == 'South':
        lon_0 = 130.
        lon_0_ortho = lon_0 - 180.
        lat_0 = -90.