def compare_plots_one_param_line_hist_cum(list_of_pos_by_name,param,cl,color_by_name,cl_lines_flag=True,analyticCDF=None,legend='auto'):

    """
    Plots a gaussian kernel density estimate for a set
    of Posteriors onto the same axis.

    @param list_of_pos: a list of Posterior class instances.

    @param plot1DParams: a dict; {paramName:Nbins}

    """

    from scipy import seterr as sp_seterr

    #Create common figure
    myfig=plt.figure(figsize=(6,4.5),dpi=150)
    myfig.add_axes([0.15,0.15,0.6,0.76])
    list_of_pos=list_of_pos_by_name.values()
    list_of_pos_names=list_of_pos_by_name.keys()

    injvals=[]
    allmins=map(lambda a: np.min(a[param].samples), list_of_pos)
    allmaxes=map(lambda a: np.max(a[param].samples), list_of_pos)
    min_pos=np.min(allmins)
    max_pos=np.max(allmaxes)
 
    patch_list=[]
    max_y=1.

    posbins=np.linspace(min_pos,max_pos,50)

    for name,posterior in list_of_pos_by_name.items():
        colour=color_by_name[name]
        #myfig.gca(autoscale_on=True)
        if posterior[param].injval:
            injvals.append(posterior[param].injval)

        try:
            n,bins=np.histogram(posterior[param].samples,bins=posbins,normed=True,new=True)
        except:
            n,bins=np.histogram(posterior[param].samples,bins=posbins,normed=True)

        if min(bins)==max(bins):
            print 'Skipping '+param
            continue

        (n, bins, patches)=plt.hist(posterior[param].samples,bins=bins,histtype='step',label=name,normed=True,hold=True,color=color_by_name[name],cumulative='True')#range=(min_pos,max_pos)

        patch_list.append(patches[0])

    top_cl_intervals_list={}
    pos_names=list_of_pos_by_name.keys()


    for name,posterior in list_of_pos_by_name.items():
        #toppoints,injectionconfidence,reses,injection_area,cl_intervals=bppu.greedy_bin_one_param(posterior,{param:greedyBinSizes[param]},[cl])
        cl_intervals=posterior[param].prob_interval([cl])
        colour=color_by_name[name]
        if cl_intervals[0] is not None and cl_lines_flag:
            try:
                plt.plot([cl_intervals[0][0],cl_intervals[0][0]],[0,max_y],color=colour,linestyle='--')
                plt.plot([cl_intervals[0][1],cl_intervals[0][1]],[0,max_y],color=colour,linestyle='--')
            except:
                print "MAX_Y",max_y,[cl_intervals[0][0],cl_intervals[0][0]],[cl_intervals[0][1],cl_intervals[0][1]]
        top_cl_intervals_list[name]=(cl_intervals[0][0],cl_intervals[0][1])

    if cl_lines_flag:
        pos_names.append(str(int(cl*100))+'%')
        patch_list.append(mpl.lines.Line2D(np.array([0.,1.]),np.array([0.,1.]),linestyle='--',color='black'))

    plt.grid()
    plt.xlim(min_pos,max_pos)
    plt.ylim(0,1)
    if legend:
      oned_legend=plt.figlegend(patch_list,pos_names,'right')
      for text in oned_legend.get_texts():
          text.set_fontsize('small')
    plt.xlabel(bppu.plot_label(param))
    plt.ylabel('Cumulative Probability')
    plt.draw()
    #plt.tight_layout()
    if injvals:
        print "Injection parameter is %f"%(float(injvals[0]))
        injpar=injvals[0]
        #if min(pos_samps)<injpar and max(pos_samps)>injpar:
        plt.plot([injpar,injpar],[0,max_y],'r-.',scalex=False,scaley=False,linewidth=4,label='Injection')
    if analyticCDF is not None:
	plt.plot(posbins,map(analyticCDF,posbins),'r')
    return myfig,top_cl_intervals_list#,rkde
def compare_plots_one_param_line_hist(list_of_pos_by_name,param,cl,color_by_name,cl_lines_flag=True,legend='right',analyticPDF=None):


    """
    Plots a gaussian kernel density estimate for a set
    of Posteriors onto the same axis.

    @param list_of_pos: a list of Posterior class instances.

    @param plot1DParams: a dict; {paramName:Nbins}

    """

    from scipy import seterr as sp_seterr

    #Create common figure
    myfig=plt.figure(figsize=(6,4.5),dpi=150)
  #myfig.add_axes([0.1,0.1,0.65,0.85])
  #myfig.add_axes([0.15,0.15,0.6,0.76])
    axes=plt.Axes(myfig,[0.15,0.15,0.6,0.76])
    myfig.add_axes(axes)
    majorFormatterX=ScalarFormatter(useMathText=True)
    majorFormatterX.format_data=lambda data:'%.6g'%(data)
    majorFormatterY=ScalarFormatter(useMathText=True)
    majorFormatterY.format_data=lambda data:'%.6g'%(data)
    majorFormatterX.set_scientific(True)
    majorFormatterY.set_scientific(True)

    list_of_pos=list_of_pos_by_name.values()
    list_of_pos_names=list_of_pos_by_name.keys()

    allmins=map(lambda a: np.min(a[param].samples), list_of_pos)
    allmaxes=map(lambda a: np.max(a[param].samples), list_of_pos)
    min_pos=np.min(allmins)
    max_pos=np.max(allmaxes)

    injvals=[]

    patch_list=[]
    max_y=0

    posbins=np.linspace(min_pos,max_pos,50)

    for name,posterior in list_of_pos_by_name.items():
        colour=color_by_name[name]
        #myfig.gca(autoscale_on=True)
        if posterior[param].injval:
            injvals.append(posterior[param].injval)

        try:
            n,bins=np.histogram(posterior[param].samples,bins=posbins,normed=True,new=True)
        except:
            n,bins=np.histogram(posterior[param].samples,bins=posbins,normed=True)
        if min(bins)==max(bins):
            print 'Skipping '+param
            continue
        locmaxy=max(n)
        if locmaxy>max_y: max_y=locmaxy
#(n, bins, patches)=plt.hist(posterior[param].samples,bins=bins,facecolor='white',label=name,normed=True,hold=True,color=color_by_name[name])#range=(min_pos,max_pos)
        (n, bins, patches)=plt.hist(posterior[param].samples,bins=bins,histtype='step',label=name,normed=True,hold=True,color=color_by_name[name])
        patch_list.append(patches[0])

    Nchars=max(map(lambda d:len(majorFormatterX.format_data(d)),axes.get_xticks()))
    if Nchars>8:
      Nticks=3
    elif Nchars>5:
      Nticks=4
    elif Nchars>4:
      Nticks=6
    else:
      Nticks=6
    locatorX=mpl.ticker.MaxNLocator(nbins=Nticks)
    locatorX.view_limits(bins[0],bins[-1])
    axes.xaxis.set_major_locator(locatorX)

    plt.xlim(min_pos,max_pos)
    top_cl_intervals_list={}
    pos_names=list_of_pos_by_name.keys()


    for name,posterior in list_of_pos_by_name.items():
        #toppoints,injectionconfidence,reses,injection_area,cl_intervals=bppu.greedy_bin_one_param(posterior,{param:greedyBinSizes[param]},[cl])
        cl_intervals=posterior[param].prob_interval([cl])
        colour=color_by_name[name]
        if cl_intervals[0] is not None and cl_lines_flag:
            try:
                plt.plot([cl_intervals[0][0],cl_intervals[0][0]],[0,max_y],color=colour,linestyle='--')
                plt.plot([cl_intervals[0][1],cl_intervals[0][1]],[0,max_y],color=colour,linestyle='--')
            except:
                print "MAX_Y",max_y,[cl_intervals[0][0],cl_intervals[0][0]],[cl_intervals[0][1],cl_intervals[0][1]]
        top_cl_intervals_list[name]=(cl_intervals[0][0],cl_intervals[0][1])

    if cl_lines_flag:
        pos_names.append(str(int(cl*100))+'%')
        patch_list.append(mpl.lines.Line2D(np.array([0.,1.]),np.array([0.,1.]),linestyle='--',color='black'))

    plt.grid()
    plt.xlim(min_pos,max_pos)
    if legend is not None:
      oned_legend=plt.figlegend(patch_list,pos_names,'right')
      for text in oned_legend.get_texts():
        text.set_fontsize('small')
    plt.xlabel(bppu.plot_label(param))
    plt.ylabel('Probability density')
    plt.draw()
    #plt.tight_layout()
    if injvals:
        print "Injection parameter is %f"%(float(injvals[0]))
        injpar=injvals[0]
        #if min(pos_samps)<injpar and max(pos_samps)>injpar:
        plt.plot([injpar,injpar],[0,max_y],'r-.',scalex=False,scaley=False,linewidth=4,label='Injection')

    #
    if analyticPDF is not None:
	plt.plot(posbins,map(analyticPDF,posbins),'r')
    return myfig,top_cl_intervals_list#,rkde
def compare_plots_one_param_pdf(list_of_pos_by_name,param,analyicPDF=None):
    """
    Plots a gaussian kernel density estimate for a set
    of Posteriors onto the same axis.

    @param list_of_pos: a list of Posterior class instances.

    @param plot1DParams: a dict; {paramName:Nbins}

    """

    from scipy import seterr as sp_seterr

    #Create common figure
    myfig=plt.figure(figsize=(6,4.5),dpi=150)

    list_of_pos=list_of_pos_by_name.values()
    list_of_pos_names=list_of_pos_by_name.keys()

    allmins=map(lambda a: np.min(a[param].samples), list_of_pos)
    allmaxes=map(lambda a: np.max(a[param].samples), list_of_pos)
    min_pos=np.min(allmins)
    max_pos=np.max(allmaxes)
    print 'Found global min: %f, max: %f'%(min_pos,max_pos)

    gkdes={}
    injvals=[]
    for name,posterior in list_of_pos_by_name.items():

        pos_samps=posterior[param].samples
        if posterior[param].injval is not None:
            injvals.append(posterior[param].injval)

        min_pos_temp=np.min(pos_samps)
        max_pos_temp=np.max(pos_samps)

        if min_pos_temp<min_pos:
            min_pos=min_pos_temp
        if max_pos_temp>max_pos:
            max_pos=max_pos_temp

        injpar=posterior[param].injval

        gkdes[name]=posterior[param].gaussian_kde

    if gkdes:
        ind=np.linspace(min_pos,max_pos,101)

        kdepdfs=[]
        for name,gkde in gkdes.items():
            kdepdf=gkde.evaluate(ind)
            kdepdfs.append(kdepdf)
            plt.plot(ind,np.transpose(kdepdf),label=name)
        plt.grid()
        plt.legend()
        plt.xlabel(bppu.plot_label(param))
        plt.xlim(min_pos,max_pos)
        plt.ylabel('Probability Density')
        try:
          plt.tight_layout()
        except:
          pass
        if injvals:
            print "Injection parameter is %f"%(float(injvals[0]))
            injpar=injvals[0]
            if min(pos_samps)<injpar and max(pos_samps)>injpar:
                plt.plot([injpar,injpar],[0,max(kdepdf)],'r-.',scalex=False,scaley=False)
    if analyticPDF is not None:
	plt.plot(ind,map(analyticPDF,ind),'r')
    #
    return myfig#,rkde
Beispiel #4
0
def compare_plots_one_param_line_hist_cum(list_of_pos_by_name,param,cl,color_by_name,cl_lines_flag=True,analyticCDF=None,legend='auto'):

    """
    Plots a gaussian kernel density estimate for a set
    of Posteriors onto the same axis.

    @param list_of_pos: a list of Posterior class instances.

    @param plot1DParams: a dict; {paramName:Nbins}

    """

    from scipy import seterr as sp_seterr

    #Create common figure
    myfig=plt.figure(figsize=(6,4.5),dpi=150)
    myfig.add_axes([0.15,0.15,0.6,0.76])
    list_of_pos=list_of_pos_by_name.values()
    list_of_pos_names=list_of_pos_by_name.keys()

    injvals=[]
    allmins=map(lambda a: np.min(a[param].samples), list_of_pos)
    allmaxes=map(lambda a: np.max(a[param].samples), list_of_pos)
    min_pos=np.min(allmins)
    max_pos=np.max(allmaxes)
 
    patch_list=[]
    max_y=1.

    posbins=np.linspace(min_pos,max_pos,50)

    for name,posterior in list_of_pos_by_name.items():
        colour=color_by_name[name]
        #myfig.gca(autoscale_on=True)
        if posterior[param].injval:
            injvals.append(posterior[param].injval)

        try:
            n,bins=np.histogram(posterior[param].samples,bins=posbins,normed=True,new=True)
        except:
            n,bins=np.histogram(posterior[param].samples,bins=posbins,normed=True)

        (n, bins, patches)=plt.hist(posterior[param].samples,bins=bins,histtype='step',label=name,normed=True,hold=True,color=color_by_name[name],cumulative='True')#range=(min_pos,max_pos)

        patch_list.append(patches[0])

    top_cl_intervals_list={}
    pos_names=list_of_pos_by_name.keys()


    for name,posterior in list_of_pos_by_name.items():
        #toppoints,injectionconfidence,reses,injection_area,cl_intervals=bppu.greedy_bin_one_param(posterior,{param:greedyBinSizes[param]},[cl])
        cl_intervals=posterior[param].prob_interval([cl])
        colour=color_by_name[name]
        if cl_intervals[0] is not None and cl_lines_flag:
            try:
                plt.plot([cl_intervals[0][0],cl_intervals[0][0]],[0,max_y],color=colour,linestyle='--')
                plt.plot([cl_intervals[0][1],cl_intervals[0][1]],[0,max_y],color=colour,linestyle='--')
            except:
                print "MAX_Y",max_y,[cl_intervals[0][0],cl_intervals[0][0]],[cl_intervals[0][1],cl_intervals[0][1]]
        top_cl_intervals_list[name]=(cl_intervals[0][0],cl_intervals[0][1])

    if cl_lines_flag:
        pos_names.append(str(int(cl*100))+'%')
        patch_list.append(mpl.lines.Line2D(np.array([0.,1.]),np.array([0.,1.]),linestyle='--',color='black'))

    plt.grid()
    plt.xlim(min_pos,max_pos)
    plt.ylim(0,1)
    if legend:
      oned_legend=plt.figlegend(patch_list,pos_names,'right')
      for text in oned_legend.get_texts():
          text.set_fontsize('small')
    plt.xlabel(bppu.plot_label(param))
    plt.ylabel('Cumulative Probability')
    plt.draw()
    #plt.tight_layout()
    if injvals:
        print "Injection parameter is %f"%(float(injvals[0]))
        injpar=injvals[0]
        #if min(pos_samps)<injpar and max(pos_samps)>injpar:
        plt.plot([injpar,injpar],[0,max_y],'r-.',scalex=False,scaley=False,linewidth=4,label='Injection')
    if analyticCDF is not None:
	plt.plot(posbins,map(analyticCDF,posbins),'r')
    return myfig,top_cl_intervals_list#,rkde
Beispiel #5
0
def compare_plots_one_param_line_hist(list_of_pos_by_name,param,cl,color_by_name,cl_lines_flag=True,legend='right',analyticPDF=None):


    """
    Plots a gaussian kernel density estimate for a set
    of Posteriors onto the same axis.

    @param list_of_pos: a list of Posterior class instances.

    @param plot1DParams: a dict; {paramName:Nbins}

    """

    from scipy import seterr as sp_seterr

    #Create common figure
    myfig=plt.figure(figsize=(6,4.5),dpi=150)
  #myfig.add_axes([0.1,0.1,0.65,0.85])
  #myfig.add_axes([0.15,0.15,0.6,0.76])
    axes=plt.Axes(myfig,[0.15,0.15,0.6,0.76])
    myfig.add_axes(axes)
    majorFormatterX=ScalarFormatter(useMathText=True)
    majorFormatterX.format_data=lambda data:'%.6g'%(data)
    majorFormatterY=ScalarFormatter(useMathText=True)
    majorFormatterY.format_data=lambda data:'%.6g'%(data)
    majorFormatterX.set_scientific(True)
    majorFormatterY.set_scientific(True)

    list_of_pos=list_of_pos_by_name.values()
    list_of_pos_names=list_of_pos_by_name.keys()

    allmins=map(lambda a: np.min(a[param].samples), list_of_pos)
    allmaxes=map(lambda a: np.max(a[param].samples), list_of_pos)
    min_pos=np.min(allmins)
    max_pos=np.max(allmaxes)

    injvals=[]

    patch_list=[]
    max_y=0

    posbins=np.linspace(min_pos,max_pos,50)

    for name,posterior in list_of_pos_by_name.items():
        colour=color_by_name[name]
        #myfig.gca(autoscale_on=True)
        if posterior[param].injval:
            injvals.append(posterior[param].injval)

        try:
            n,bins=np.histogram(posterior[param].samples,bins=posbins,normed=True,new=True)
        except:
            n,bins=np.histogram(posterior[param].samples,bins=posbins,normed=True)

        locmaxy=max(n)
        if locmaxy>max_y: max_y=locmaxy
#(n, bins, patches)=plt.hist(posterior[param].samples,bins=bins,facecolor='white',label=name,normed=True,hold=True,color=color_by_name[name])#range=(min_pos,max_pos)
        (n, bins, patches)=plt.hist(posterior[param].samples,bins=bins,histtype='step',label=name,normed=True,hold=True,color=color_by_name[name])
        patch_list.append(patches[0])

    Nchars=max(map(lambda d:len(majorFormatterX.format_data(d)),axes.get_xticks()))
    if Nchars>8:
      Nticks=3
    elif Nchars>5:
      Nticks=4
    elif Nchars>4:
      Nticks=6
    else:
      Nticks=6
    locatorX=mpl.ticker.MaxNLocator(nbins=Nticks)
    locatorX.view_limits(bins[0],bins[-1])
    axes.xaxis.set_major_locator(locatorX)

    plt.xlim(min_pos,max_pos)
    top_cl_intervals_list={}
    pos_names=list_of_pos_by_name.keys()


    for name,posterior in list_of_pos_by_name.items():
        #toppoints,injectionconfidence,reses,injection_area,cl_intervals=bppu.greedy_bin_one_param(posterior,{param:greedyBinSizes[param]},[cl])
        cl_intervals=posterior[param].prob_interval([cl])
        colour=color_by_name[name]
        if cl_intervals[0] is not None and cl_lines_flag:
            try:
                plt.plot([cl_intervals[0][0],cl_intervals[0][0]],[0,max_y],color=colour,linestyle='--')
                plt.plot([cl_intervals[0][1],cl_intervals[0][1]],[0,max_y],color=colour,linestyle='--')
            except:
                print "MAX_Y",max_y,[cl_intervals[0][0],cl_intervals[0][0]],[cl_intervals[0][1],cl_intervals[0][1]]
        top_cl_intervals_list[name]=(cl_intervals[0][0],cl_intervals[0][1])

    if cl_lines_flag:
        pos_names.append(str(int(cl*100))+'%')
        patch_list.append(mpl.lines.Line2D(np.array([0.,1.]),np.array([0.,1.]),linestyle='--',color='black'))

    plt.grid()
    plt.xlim(min_pos,max_pos)
    if legend is not None:
      oned_legend=plt.figlegend(patch_list,pos_names,'right')
      for text in oned_legend.get_texts():
        text.set_fontsize('small')
    plt.xlabel(bppu.plot_label(param))
    plt.ylabel('Probability density')
    plt.draw()
    #plt.tight_layout()
    if injvals:
        print "Injection parameter is %f"%(float(injvals[0]))
        injpar=injvals[0]
        #if min(pos_samps)<injpar and max(pos_samps)>injpar:
        plt.plot([injpar,injpar],[0,max_y],'r-.',scalex=False,scaley=False,linewidth=4,label='Injection')

    #
    if analyticPDF is not None:
	plt.plot(posbins,map(analyticPDF,posbins),'r')
    return myfig,top_cl_intervals_list#,rkde
Beispiel #6
0
def compare_plots_one_param_pdf(list_of_pos_by_name,param,analyicPDF=None):
    """
    Plots a gaussian kernel density estimate for a set
    of Posteriors onto the same axis.

    @param list_of_pos: a list of Posterior class instances.

    @param plot1DParams: a dict; {paramName:Nbins}

    """

    from scipy import seterr as sp_seterr

    #Create common figure
    myfig=plt.figure(figsize=(6,4.5),dpi=150)

    list_of_pos=list_of_pos_by_name.values()
    list_of_pos_names=list_of_pos_by_name.keys()

    allmins=map(lambda a: np.min(a[param].samples), list_of_pos)
    allmaxes=map(lambda a: np.max(a[param].samples), list_of_pos)
    min_pos=np.min(allmins)
    max_pos=np.max(allmaxes)
    print 'Found global min: %f, max: %f'%(min_pos,max_pos)

    gkdes={}
    injvals=[]
    for name,posterior in list_of_pos_by_name.items():

        pos_samps=posterior[param].samples
        if posterior[param].injval is not None:
            injvals.append(posterior[param].injval)

        min_pos_temp=np.min(pos_samps)
        max_pos_temp=np.max(pos_samps)

        if min_pos_temp<min_pos:
            min_pos=min_pos_temp
        if max_pos_temp>max_pos:
            max_pos=max_pos_temp

        injpar=posterior[param].injval

        gkdes[name]=posterior[param].gaussian_kde

    if gkdes:
        ind=np.linspace(min_pos,max_pos,101)

        kdepdfs=[]
        for name,gkde in gkdes.items():
            kdepdf=gkde.evaluate(ind)
            kdepdfs.append(kdepdf)
            plt.plot(ind,np.transpose(kdepdf),label=name)
        plt.grid()
        plt.legend()
        plt.xlabel(bppu.plot_label(param))
        plt.xlim(min_pos,max_pos)
        plt.ylabel('Probability Density')
        try:
          plt.tight_layout()
        except:
          pass
        if injvals:
            print "Injection parameter is %f"%(float(injvals[0]))
            injpar=injvals[0]
            if min(pos_samps)<injpar and max(pos_samps)>injpar:
                plt.plot([injpar,injpar],[0,max(kdepdf)],'r-.',scalex=False,scaley=False)
    if analyticPDF is not None:
	plt.plot(ind,map(analyticPDF,ind),'r')
    #
    return myfig#,rkde