Beispiel #1
0
  def get_volume_derivative(self,instruments):
    injfnames = self.inj_fnames
    FAR = self.far[instruments]
    zero_lag_segments = self.zero_lag_segments[instruments]
    gw = self.gw
    twoDMassBins = self.twoDMassBins

    #determine binning up front for infinite FAR
    found, missed = self.get_injections(instruments, FAR=float("inf"))
    dbin = rate.LogarithmicBins(min([l.distance for l in found]),max([l.distance for l in found]), int(self.opts.dist_bins))
    
    livetime = float(abs(zero_lag_segments))
    FARh = FAR*100000
    FARl = FAR*0.001
    nbins = 5
    FARS = rate.LogarithmicBins(FARl, FARh, nbins)
    vA = []
    vA2 = []
    for far in FARS.centres():
      print >>sys.stderr, "computing volume at FAR " + str(far)
      vAt, vA2t = self.twoD_SearchVolume(instruments, dbin=dbin, FAR = far, bootnum=1)
      # we need to compute derivitive of log according to ul paper
      vAt.array = scipy.log10(vAt.array + 0.001)
      vA.append(vAt)
    # the derivitive is calcuated with respect to FAR * t
    FARTS = rate.LogarithmicBins(FARl * livetime, FARh * livetime, nbins)
    return self._derivitave_fit(FARTS, FAR * livetime, vA, twoDMassBins)
Beispiel #2
0
	def _bin_events(self, binning = None):
		# called internally by finish()
		if binning is None:
			minx, maxx = min(self.injected_x), max(self.injected_x)
			miny, maxy = min(self.injected_y), max(self.injected_y)
			binning = rate.NDBins((rate.LogarithmicBins(minx, maxx, 256), rate.LogarithmicBins(miny, maxy, 256)))

		self.efficiency = rate.BinnedRatios(binning)

		for xy in zip(self.injected_x, self.injected_y):
			self.efficiency.incdenominator(xy)
		for xy in zip(self.found_x, self.found_y):
			self.efficiency.incnumerator(xy)

		# 1 / error^2 is the number of injections that need to be
		# within the window in order for the fractional uncertainty
		# in that number to be = error.  multiplying by
		# bins_per_inj tells us how many bins the window needs to
		# cover, and taking the square root translates that into
		# the window's length on a side in bins.  because the
		# contours tend to run parallel to the x axis, the window
		# is dilated in that direction to improve resolution.

		bins_per_inj = self.efficiency.used() / float(len(self.injected_x))
		self.window_size_x = self.window_size_y = math.sqrt(bins_per_inj / self.error**2)
		self.window_size_x *= math.sqrt(2)
		self.window_size_y /= math.sqrt(2)
		if self.window_size_x > 100 or self.window_size_y > 100:
			# program will take too long to run
			raise ValueError("smoothing filter too large (not enough injections)")

		print >>sys.stderr, "The smoothing window for %s is %g x %g bins" % ("+".join(self.instruments), self.window_size_x, self.window_size_y),
		print >>sys.stderr, "which is %g%% x %g%% of the binning" % (100.0 * self.window_size_x / binning[0].n, 100.0 * self.window_size_y / binning[1].n)
Beispiel #3
0
def get_volume_derivative(injfnames, twoDMassBins, dBin, FAR,
                          zero_lag_segments, gw):
    if (FAR == 0):
        print "\n\nFAR = 0\n \n"
        # FIXME lambda = ~inf if loudest event is above loudest timeslide?
        output = rate.BinnedArray(twoDMassBins)
        output.array = 10**6 * numpy.ones(output.array.shape)
        return output
    livetime = float(abs(zero_lag_segments))
    FARh = FAR * 100000
    FARl = FAR * 0.001
    nbins = 5
    FARS = rate.LogarithmicBins(FARl, FARh, nbins)
    vA = []
    vA2 = []
    for far in FARS.centres():
        m, f = get_injections(injfnames, far, zero_lag_segments)
        print >> sys.stderr, "computing volume at FAR " + str(far)
        vAt, vA2t = twoD_SearchVolume(f, m, twoDMassBins, dBin, gw, livetime,
                                      1)
        # we need to compute derivitive of log according to ul paper
        vAt.array = scipy.log10(vAt.array + 0.001)
        vA.append(vAt)
    # the derivitive is calcuated with respect to FAR * t
    FARS = rate.LogarithmicBins(FARl * livetime, FARh * livetime, nbins)
    return derivitave_fit(FARS, FAR * livetime, vA, twoDMassBins)
Beispiel #4
0
def make_binning(plots):
	plots = [plot for instrument in plots.keys() for plot in plots[instrument] if isinstance(plot, SimBurstUtils.Efficiency_hrss_vs_freq)]
	if not plots:
		return None
	minx = min([min(plot.injected_x) for plot in plots])
	maxx = max([max(plot.injected_x) for plot in plots])
	miny = min([min(plot.injected_y) for plot in plots])
	maxy = max([max(plot.injected_y) for plot in plots])
	return rate.NDBins((rate.LogarithmicBins(minx, maxx, 512), rate.LogarithmicBins(miny, maxy, 512)))
 def __init__(self, x_instrument, y_instrument, magnitude, desc,
              min_magnitude, max_magnitude):
     self.fig, self.axes = SnglBurstUtils.make_burst_plot(
         "%s %s" % (x_instrument, desc), "%s %s" % (y_instrument, desc))
     self.fig.set_size_inches(6, 6)
     self.axes.loglog()
     self.x_instrument = x_instrument
     self.y_instrument = y_instrument
     self.magnitude = magnitude
     self.foreground_x = []
     self.foreground_y = []
     self.n_foreground = 0
     self.n_background = 0
     self.n_injections = 0
     self.foreground_bins = rate.BinnedArray(
         rate.NDBins(
             (rate.LogarithmicBins(min_magnitude, max_magnitude, 1024),
              rate.LogarithmicBins(min_magnitude, max_magnitude, 1024))))
     self.background_bins = rate.BinnedArray(
         rate.NDBins(
             (rate.LogarithmicBins(min_magnitude, max_magnitude, 1024),
              rate.LogarithmicBins(min_magnitude, max_magnitude, 1024))))
     self.coinc_injection_bins = rate.BinnedArray(
         rate.NDBins(
             (rate.LogarithmicBins(min_magnitude, max_magnitude, 1024),
              rate.LogarithmicBins(min_magnitude, max_magnitude, 1024))))
     self.incomplete_coinc_injection_bins = rate.BinnedArray(
         rate.NDBins(
             (rate.LogarithmicBins(min_magnitude, max_magnitude, 1024),
              rate.LogarithmicBins(min_magnitude, max_magnitude, 1024))))
Beispiel #6
0
 def get_distance_bins(self, instruments, found=None, missed=None):
   if not found and not missed: found, missed = self.get_injections(instruments)
   if not found:  
     print >>sys.stderr,"Found no injections cannot compute distance bins ABORTING"
     sys.exit(1)
   #Give the bins some padding based on the errors
   maxdist = max([s.distance for s in found])
   mindist = min([s.distance for s in found])
   if (maxdist < 0) or (mindist < 0) or (mindist > maxdist):
     print >>sys.stderr, "minimum and maximum distances are screwy, maybe the distance errors given in the options don't make sense? ABORTING"
     sys.exit(1)
   self.dBin[instruments] = rate.LogarithmicBins(mindist,maxdist,self.opts.dist_bins)
Beispiel #7
0
def plotspectrogram(sequencelist, outfile, epoch=0, deltaT=1, f0=0, deltaF=1,\
                    t0=0, ydata=None, **kwargs):
    """
    Plots a list of REAL?VectorSequences on a time-frequency-amplitude colour
    map. The epochand deltaT arguments define the spacing in the x direction
    for the given VectorSequence, and similarly f0 and deltaF in the
    y-direction. If a list of VectorSequences is given, any of these arguments
    can be in list form, one for each sequence.

    ydata can be given as to explicitly define the frequencies at which the
    sequences are sampled.
    """
    # construct list of series
    if not hasattr(sequencelist, "__contains__"):
        sequencelist = [sequencelist]
    numseq = len(sequencelist)

    # format variables
    if isinstance(epoch, numbers.Number) or isinstance(epoch, lal.LIGOTimeGPS):
        epoch = [epoch] * numseq
        epoch = map(float, epoch)
    if not len(epoch) == numseq:
        raise ValueError("Wrong number of epoch arguments given.")
    if isinstance(deltaT, numbers.Number):
        deltaT = [deltaT] * numseq
        deltaT = map(float, deltaT)
    if not len(deltaT) == numseq:
        raise ValueError("Wrong number of deltaT arguments given.")
    if not ydata is None:
        if isinstance(f0, numbers.Number):
            f0 = [f0] * numseq
            f0 = map(float, f0)
        if not len(f0) == numseq:
            raise ValueError("Wrong number of f0 arguments given.")
        if isinstance(deltaF, numbers.Number):
            deltaF = [deltaF] * numseq
            deltaF = map(float, deltaF)
        if not len(deltaF) == numseq:
            raise ValueError("Wrong number of deltaF arguments given.")

    # get limits
    xlim = kwargs.pop("xlim", None)
    ylim = kwargs.pop("ylim", None)
    colorlim = kwargs.pop("colorlim", None)
    if xlim:
        start, end = xlim
    else:
        start = min(epoch)
        end   = max(e + l.length * dt\
                    for e,l,dt in zip(epoch, sequencelist, deltaT))
    if not ydata is None and not ylim:
        ylim = [ydata.min(), ydata.max()]

    # get axis scales
    logx = kwargs.pop("logx", False)
    logy = kwargs.pop("logy", False)
    logcolor = kwargs.pop("logcolor", False)

    # get legend loc
    loc = kwargs.pop("loc", 0)
    alpha = kwargs.pop("alpha", 0.8)

    # get colorbar options
    hidden_colorbar = kwargs.pop("hidden_colorbar", False)

    # get savefig option
    bbox_inches = kwargs.pop("bbox_inches", None)

    #
    # get labels
    #

    xlabel = kwargs.pop("xlabel", None)
    if xlabel:
        unit = 1
    if not xlabel:
        unit, timestr = plotutils.time_axis_unit(end - start)
        if not t0:
            t0 = start
        t0 = lal.LIGOTimeGPS(t0)
        if int(t0.gpsNanoSeconds) == 0:
            xlabel = datetime.datetime(*lal.GPSToUTC(int(t0))[:6])\
                         .strftime("%B %d %Y, %H:%M:%S %ZUTC")
            xlabel = "Time (%s) since %s (%s)" % (timestr, xlabel, int(t0))
        else:
            xlabel = datetime.datetime(*lal.GPSToUTC(t0.gpsSeconds)[:6])\
                          .strftime("%B %d %Y, %H:%M:%S %ZUTC")
            xlabel = "Time (%s) since %s (%s)"\
                     % (timestr,
                        xlabel.replace(" UTC",".%.3s UTC" % t0.gpsNanoSeconds),\
                        t0)
        t0 = float(t0)
    ylabel = kwargs.pop("ylabel", "Frequency (Hz)")
    colorlabel = kwargs.pop("colorlabel", "Amplitude")
    title = kwargs.pop("title", "")
    subtitle = kwargs.pop("subtitle", "")

    #
    # restrict data to the correct limits for plotting
    #

    interpolate = logy and ydata is None

    for i, sequence in enumerate(sequencelist):
        if interpolate:
            # interpolate the data onto a log-scale
            sequence, ydata = loginterpolate(sequence, f0[i], deltaF[i])
        if logy and ylim:
            plotted = (ydata > ylim[0]) & (ydata <= ylim[1])
            newVectorLength = int(plotted.sum())
            newsequence = lal.CreateREAL8VectorSequence(sequence.length,\
                                                            newVectorLength)
            for j in range(sequence.length):
                newsequence.data[j, :] = sequence.data[j, :][plotted]
            del sequence
            sequencelist[i] = newsequence
    if len(sequencelist) and logy and ylim:
        ydata = ydata[plotted]

    #
    # format bins
    #

    xbins = []
    for i in range(numseq):
        xmin = epoch[i]
        xmax = epoch[i] + sequencelist[i].length * deltaT[i]
        xbins.append(rate.LinearBins(float(xmin-t0)/unit, float(xmax-t0)/unit,\
                                     2))

    ybins = []
    for i in range(numseq):
        if ydata is not None:
            ydata = numpy.asarray(ydata)
            ymin = ydata.min()
            ymax = ydata.max()
        else:
            ymin = f0[i]
            ymax = f0[i] + sequencelist[i].vectorLength * deltaF[i]
        if logy:
            if ymin == 0:
                ymin = deltaF[i]
            ybins.append(rate.LogarithmicBins(ymin, ymax, 2))
        else:
            ybins.append(rate.LinearBins(ymin, ymax, 2))

    #
    # plot
    #

    kwargs.setdefault("interpolation", "kaiser")

    plot = plotutils.ImagePlot(xlabel=xlabel, ylabel=ylabel, title=title,\
                               subtitle=subtitle, colorlabel=colorlabel)

    for sequence, x, y in zip(sequencelist, xbins, ybins):
        data = numpy.ma.masked_where(numpy.isnan(sequence.data), sequence.data,\
                                     copy=False)
        plot.add_content(data.T, x, y, **kwargs)

    # finalize
    plot.finalize(colorbar=True, logcolor=logcolor, minorticks=True,\
                  clim=colorlim)
    if hidden_colorbar:
        plotutils.add_colorbar(plot.ax, visible=False)

    # set logscale
    if logx:
        plot.ax.xaxis.set_scale("log")
    if logy:
        plot.ax.yaxis.set_scale("log")
    plot.ax._update_transScale()

    # format axes
    if xlim:
        xlim = (numpy.asarray(xlim).astype(float) - t0) / unit
        plot.ax.set_xlim(xlim)
    if ylim:
        plot.ax.set_ylim(ylim)

    # set grid and ticks
    plot.ax.grid(True, which="both")
    plotutils.set_time_ticks(plot.ax)
    plotutils.set_minor_ticks(plot.ax)

    # save and close
    plot.savefig(outfile, bbox_inches=bbox_inches,\
                 bbox_extra_artists=plot.ax.texts)
    plot.close()
Beispiel #8
0
  def twoD_SearchVolume(self, instruments, dbin=None, FAR=None, bootnum=None, derr=0.197, dsys=0.074):
    """ 
    Compute the search volume in the mass/mass plane, bootstrap
    and measure the first and second moment (assumes the underlying 
    distribution can be characterized by those two parameters) 
    This is gonna be brutally slow
    derr = (0.134**2+.103**2+.102**2)**.5 = 0.197 which is the 3 detector 
    calibration uncertainty in quadrature.  This is conservative since some injections
     will be H1L1 and have a lower error of .17
    the dsys is the DC offset which is the max offset of .074. 
    """

    if not FAR: FAR = self.far[instruments]
    found, missed = self.get_injections(instruments, FAR)
    twodbin = self.twoDMassBins
    wnfunc = self.gw
    livetime = self.livetime[instruments]
    if not bootnum: bootnum = self.bootnum

    if wnfunc: wnfunc /= wnfunc[(wnfunc.shape[0]-1) / 2, (wnfunc.shape[1]-1) / 2]

    x = twodbin.shape[0]
    y = twodbin.shape[1]
    z = int(self.opts.dist_bins)

    rArrays = []
    volArray=rate.BinnedArray(twodbin)
    volArray2=rate.BinnedArray(twodbin)
    #set up ratio arrays for each distance bin
    for k in range(z):
      rArrays.append(rate.BinnedRatios(twodbin))

    # Bootstrap to account for errors
    for n in range(bootnum):
      #initialize by setting these to zero
      for k in range(z):
        rArrays[k].numerator.array = numpy.zeros(rArrays[k].numerator.bins.shape)
        rArrays[k].denominator.array = numpy.zeros(rArrays[k].numerator.bins.shape)
      #Scramble the inj population and distances
      if bootnum > 1: 
        sm, sf = self._scramble_pop(missed, found)
        # I make a separate array of distances to speed up this calculation
        f_dist = self._scramble_dist(sf, derr, dsys)
      else: 
        sm, sf = missed, found
        f_dist = numpy.array([l.distance for l in found])
     
      # compute the distance bins
      if not dbin: 
        dbin = rate.LogarithmicBins(min(f_dist),max(f_dist), z)
      #else: print dbin.centres()
      

      # get rid of all missed injections outside the distance bins
      # to prevent binning errors
      sm, m_dist = self.cut_distance(sm, dbin)
      sf, f_dist = self.cut_distance(sf, dbin)


      for i, l in enumerate(sf):#found:
        tbin = rArrays[dbin[f_dist[i]]]
        tbin.incnumerator( (l.mass1, l.mass2) )
      for i, l in enumerate(sm):#missed:
        tbin = rArrays[dbin[m_dist[i]]]
        tbin.incdenominator( (l.mass1, l.mass2) )
    
      tmpArray2=rate.BinnedArray(twodbin) #start with a zero array to compute the mean square
      for k in range(z): 
        tbins = rArrays[k]
        tbins.denominator.array += tbins.numerator.array
        if wnfunc: rate.filter_array(tbins.denominator.array,wnfunc)
        if wnfunc: rate.filter_array(tbins.numerator.array,wnfunc)
        tbins.regularize()
        # logarithmic(d)
        integrand = 4.0 * pi * tbins.ratio() * dbin.centres()[k]**3 * dbin.delta
        volArray.array += integrand
        tmpArray2.array += integrand #4.0 * pi * tbins.ratio() * dbin.centres()[k]**3 * dbin.delta
        print >>sys.stderr, "bootstrapping:\t%.1f%% and Calculating smoothed volume:\t%.1f%%\r" % ((100.0 * n / bootnum), (100.0 * k / z)),
      tmpArray2.array *= tmpArray2.array
      volArray2.array += tmpArray2.array
    
    print >>sys.stderr, "" 
    #Mean and variance
    volArray.array /= bootnum
    volArray2.array /= bootnum
    volArray2.array -= volArray.array**2 # Variance
    volArray.array *= livetime
    volArray2.array *= livetime*livetime # this gets two powers of live time
    return volArray, volArray2
Beispiel #9
0
else:
  Found = get_burst_injections(opts.burst_found)
  Missed = get_burst_injections(opts.burst_missed)


# restrict the sims to a distance range
Found = cut_distance(Found, 1, max_dist)
Missed = cut_distance(Missed, 1, max_dist)


# get a 2D mass binning
twoDMassBins = get_2d_mass_bins(min_mass, max_mass, mass_bins)

# get log distance bins
dBin = rate.LogarithmicBins(0.1,max_dist*1.25,dist_bins)

# Someday we could try a Gaussian smoothing function
#gw = rate.gaussian_window2d(2,2,8)
gw = None

#Get derivative of volume with respect to FAR
#dvA = get_volume_derivative(opts.injfnames, twoDMassBins, dBin, FAR, zero_lag_segments, gw)

vA, vA2 = twoD_SearchVolume(Found, Missed, twoDMassBins, dBin, gw, 1.0, bootnum=int(opts.bootstrap_iterations))

# FIXME convert to years (use some lal or pylal thing in the future)
#vA.array /= secs_in_year
#vA2.array /= secs_in_year * secs_in_year #two powers for this squared quantity

#Trim the array to have sane values outside the total mass area of interest
Beispiel #10
0
	def finish(self):
		fig, axes = SnglBurstUtils.make_burst_plot(r"Injection Amplitude (\(\mathrm{s}^{-\frac{1}{3}}\))", "Detection Efficiency", width = 108.0)
		axes.set_title(r"Detection Efficiency vs.\ Amplitude")
		axes.semilogx()
		axes.set_position([0.10, 0.150, 0.86, 0.77])

		# set desired yticks
		axes.set_yticks((0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0))
		axes.set_yticklabels((r"\(0\)", r"\(0.1\)", r"\(0.2\)", r"\(0.3\)", r"\(0.4\)", r"\(0.5\)", r"\(0.6\)", r"\(0.7\)", r"\(0.8\)", r"\(0.9\)", r"\(1.0\)"))
		axes.xaxis.grid(True, which = "major,minor")
		axes.yaxis.grid(True, which = "major,minor")

		# put made and found injections in the denominators and
		# numerators of the efficiency bins
		bins = rate.NDBins((rate.LogarithmicBins(min(sim.amplitude for sim in self.all), max(sim.amplitude for sim in self.all), 400),))
		efficiency_num = rate.BinnedArray(bins)
		efficiency_den = rate.BinnedArray(bins)
		for sim in self.found:
			efficiency_num[sim.amplitude,] += 1
		for sim in self.all:
			efficiency_den[sim.amplitude,] += 1

		# generate and plot trend curves.  adjust window function
		# normalization so that denominator array correctly
		# represents the number of injections contributing to each
		# bin:  make w(0) = 1.0.  note that this factor has no
		# effect on the efficiency because it is common to the
		# numerator and denominator arrays.  we do this for the
		# purpose of computing the Poisson error bars, which
		# requires us to know the counts for the bins
		windowfunc = rate.gaussian_window(self.filter_width)
		windowfunc /= windowfunc[len(windowfunc) / 2 + 1]
		rate.filter_binned_array(efficiency_num, windowfunc)
		rate.filter_binned_array(efficiency_den, windowfunc)

		# regularize:  adjust unused bins so that the efficiency is
		# 0, not NaN
		assert (efficiency_num <= efficiency_den).all()
		efficiency_den[efficiency_num == 0 & efficiency_den == 0] = 1

		line1, A50, A50_err = render_data_from_bins(file("string_efficiency.dat", "w"), axes, efficiency_num, efficiency_den, self.cal_uncertainty, self.filter_width, colour = "k", linestyle = "-", erroralpha = 0.2)
		print >>sys.stderr, "Pipeline's 50%% efficiency point for all detections = %g +/- %g%%\n" % (A50, A50_err * 100)

		# add a legend to the axes
		axes.legend((line1,), (r"\noindent Injections recovered with $\Lambda > %s$" % SnglBurstUtils.latexnumber("%.2e" % self.detection_threshold),), loc = "lower right")

		# adjust limits
		axes.set_xlim([1e-21, 2e-18])
		axes.set_ylim([0.0, 1.0])

		#
		# dump some information about the highest-amplitude missed
		# and quietest-amplitude found injections
		#

		self.loudest_missed.sort(reverse = True)
		self.quietest_found.sort(reverse = True)

		f = file("string_loud_missed_injections.txt", "w")
		print >>f, "Highest Amplitude Missed Injections"
		print >>f, "==================================="
		for amplitude, sim, offsetvector, filename, likelihood_ratio in self.loudest_missed:
			print >>f
			print >>f, "%s in %s:" % (str(sim.simulation_id), filename)
			if likelihood_ratio is None:
				print >>f, "Not recovered"
			else:
				print >>f, "Recovered with \\Lambda = %.16g, detection threshold was %.16g" % (likelihood_ratio, self.detection_threshold)
			for instrument in self.seglists:
				print >>f, "In %s:" % instrument
				print >>f, "\tInjected amplitude:\t%.16g" % SimBurstUtils.string_amplitude_in_instrument(sim, instrument, offsetvector)
				print >>f, "\tTime of injection:\t%s s" % sim.time_at_instrument(instrument, offsetvector)
			print >>f, "Amplitude in waveframe:\t%.16g" % sim.amplitude
			t = sim.get_time_geocent()
			print >>f, "Time at geocentre:\t%s s" % t
			print >>f, "Segments within 60 seconds:\t%s" % segmentsUtils.segmentlistdict_to_short_string(self.seglists & segments.segmentlistdict((instrument, segments.segmentlist([segments.segment(t-offsetvector[instrument]-60, t-offsetvector[instrument]+60)])) for instrument in self.seglists))
			print >>f, "Vetoes within 60 seconds:\t%s" % segmentsUtils.segmentlistdict_to_short_string(self.vetoseglists & segments.segmentlistdict((instrument, segments.segmentlist([segments.segment(t-offsetvector[instrument]-60, t-offsetvector[instrument]+60)])) for instrument in self.vetoseglists))

		f = file("string_quiet_found_injections.txt", "w")
		print >>f, "Lowest Amplitude Found Injections"
		print >>f, "================================="
		for inv_amplitude, sim, offsetvector, filename, likelihood_ratio in self.quietest_found:
			print >>f
			print >>f, "%s in %s:" % (str(sim.simulation_id), filename)
			if likelihood_ratio is None:
				print >>f, "Not recovered"
			else:
				print >>f, "Recovered with \\Lambda = %.16g, detection threshold was %.16g" % (likelihood_ratio, self.detection_threshold)
			for instrument in self.seglists:
				print >>f, "In %s:" % instrument
				print >>f, "\tInjected amplitude:\t%.16g" % SimBurstUtils.string_amplitude_in_instrument(sim, instrument, offsetvector)
				print >>f, "\tTime of injection:\t%s s" % sim.time_at_instrument(instrument, offsetvector)
			print >>f, "Amplitude in waveframe:\t%.16g" % sim.amplitude
			t = sim.get_time_geocent()
			print >>f, "Time at geocentre:\t%s s" % t
			print >>f, "Segments within 60 seconds:\t%s" % segmentsUtils.segmentlistdict_to_short_string(self.seglists & segments.segmentlistdict((instrument, segments.segmentlist([segments.segment(t-offsetvector[instrument]-60, t-offsetvector[instrument]+60)])) for instrument in self.seglists))
			print >>f, "Vetoes within 60 seconds:\t%s" % segmentsUtils.segmentlistdict_to_short_string(self.vetoseglists & segments.segmentlistdict((instrument, segments.segmentlist([segments.segment(t-offsetvector[instrument]-60, t-offsetvector[instrument]+60)])) for instrument in self.vetoseglists))

		#
		# done
		#

		return fig,