Beispiel #1
0
def DefaultBernoulliLDS(D_obs, D_latent, D_input=0,
                        mu_init=None, sigma_init=None,
                        A=None, B=None, sigma_states=None,
                        C=None, D=None
                        ):
    model = LaplaceApproxBernoulliLDS(
        init_dynamics_distn=
            Gaussian(mu_0=np.zeros(D_latent), sigma_0=np.eye(D_latent),
                     kappa_0=1.0, nu_0=D_latent + 1),
        dynamics_distn=Regression(
            nu_0=D_latent + 1,
            S_0=D_latent * np.eye(D_latent),
            M_0=np.zeros((D_latent, D_latent + D_input)),
            K_0=D_latent * np.eye(D_latent + D_input)),
        emission_distn=
            BernoulliRegression(D_obs, D_latent + D_input, verbose=False))

    set_default = \
        lambda prm, val, default: \
            model.__setattr__(prm, val if val is not None else default)

    set_default("mu_init", mu_init, np.zeros(D_latent))
    set_default("sigma_init", sigma_init, np.eye(D_latent))

    set_default("A", A, 0.99 * random_rotation(D_latent))
    set_default("B", B, 0.1 * np.random.randn(D_latent, D_input))
    set_default("sigma_states", sigma_states, 0.1 * np.eye(D_latent))

    set_default("C", C, np.random.randn(D_obs, D_latent))
    set_default("D", D, 0.1 * np.random.randn(D_obs, D_input))

    return model
Beispiel #2
0
def DefaultLDS(D_obs, D_latent, D_input=0,
               mu_init=None, sigma_init=None,
               A=None, B=None, sigma_states=None,
               C=None, D=None, sigma_obs=None):
    model = LDS(
        dynamics_distn=Regression(
            nu_0=D_latent + 1,
            S_0=D_latent * np.eye(D_latent),
            M_0=np.zeros((D_latent, D_latent + D_input)),
            K_0=D_latent * np.eye(D_latent + D_input)),
        emission_distn=Regression(
            nu_0=D_obs + 1,
            S_0=D_obs * np.eye(D_obs),
            M_0=np.zeros((D_obs, D_latent + D_input)),
            K_0=D_obs * np.eye(D_latent + D_input)))

    set_default = \
        lambda prm, val, default: \
            model.__setattr__(prm, val if val is not None else default)

    set_default("mu_init", mu_init, np.zeros(D_latent))
    set_default("sigma_init", sigma_init, np.eye(D_latent))

    set_default("A", A, 0.99 * random_rotation(D_latent))
    set_default("B", B, 0.1 * np.random.randn(D_latent, D_input))
    set_default("sigma_states", sigma_states, 0.1 * np.eye(D_latent))

    set_default("C", C, np.random.randn(D_obs, D_latent))
    set_default("D", D, 0.1 * np.random.randn(D_obs, D_input))
    set_default("sigma_obs", sigma_obs, 0.1 * np.eye(D_obs))

    return model
Beispiel #3
0
def DefaultPoissonLDS(
    D_obs,
    D_latent,
    D_input=0,
    mu_init=None,
    sigma_init=None,
    A=None,
    B=None,
    sigma_states=None,
    C=None,
    d=None,
):
    assert D_input == 0, "Inputs are not yet supported for Poisson LDS"
    model = LaplaceApproxPoissonLDS(
        init_dynamics_distn=Gaussian(mu_0=np.zeros(D_latent),
                                     sigma_0=np.eye(D_latent),
                                     kappa_0=1.0,
                                     nu_0=D_latent + 1),
        dynamics_distn=Regression(A=0.9 * np.eye(D_latent),
                                  sigma=np.eye(D_latent),
                                  nu_0=D_latent + 1,
                                  S_0=D_latent * np.eye(D_latent),
                                  M_0=np.zeros((D_latent, D_latent)),
                                  K_0=D_latent * np.eye(D_latent)),
        emission_distn=PoissonRegression(D_obs, D_latent, verbose=False))

    set_default = \
        lambda prm, val, default: \
            model.__setattr__(prm, val if val is not None else default)

    set_default("mu_init", mu_init, np.zeros(D_latent))
    set_default("sigma_init", sigma_init, np.eye(D_latent))

    set_default("A", A, 0.99 * random_rotation(D_latent))
    set_default("B", B, 0.1 * np.random.randn(D_latent, D_input))
    set_default("sigma_states", sigma_states, 0.1 * np.eye(D_latent))

    set_default("C", C, np.random.randn(D_obs, D_latent))
    set_default("d", d, np.zeros((D_obs, 1)))

    return model
def make_rslds_parameters(C_init):
    init_dynamics_distns = [
        Gaussian(
            mu=np.zeros(D_latent),
            sigma=3 * np.eye(D_latent),
            nu_0=D_latent + 2,
            sigma_0=3. * np.eye(D_latent),
            mu_0=np.zeros(D_latent),
            kappa_0=1.0,
        ) for _ in range(K)
    ]

    ths = np.random.uniform(np.pi / 30., 1.0, size=K)
    As = [random_rotation(D_latent, th) for th in ths]
    As = [np.hstack((A, np.ones((D_latent, 1)))) for A in As]
    dynamics_distns = [
        Regression(
            A=As[k],
            sigma=np.eye(D_latent),
            nu_0=D_latent + 1000,
            S_0=np.eye(D_latent),
            M_0=np.hstack((np.eye(D_latent), np.zeros((D_latent, 1)))),
            K_0=np.eye(D_latent + 1),
        ) for k in range(K)
    ]

    if C_init is not None:
        emission_distns = \
            DiagonalRegression(D_obs, D_latent + 1,
                               A=C_init.copy(), sigmasq=np.ones(D_obs),
                               alpha_0=2.0, beta_0=2.0)
    else:
        emission_distns = \
            DiagonalRegression(D_obs, D_latent + 1,
                               alpha_0=2.0, beta_0=2.0)

    return init_dynamics_distns, dynamics_distns, emission_distns
Beispiel #5
0
from pylds.util import random_rotation
from pyslds.models import DefaultSLDS

npr.seed(0)

# Set parameters
K = 5
D_obs = 100
D_latent = 2
D_input = 1
T = 1000

# Make an LDS with known parameters
true_mu_inits = [np.ones(D_latent) for _ in range(K)]
true_sigma_inits = [np.eye(D_latent) for _ in range(K)]
true_As = [.9 * random_rotation(D_latent)
           for k in range(K)]
true_Bs = [3 * npr.randn(D_latent, D_input) for k in range(K)]
true_sigma_states = [np.eye(D_latent) for _ in range(K)]
true_C = np.random.randn(D_obs, D_latent)
true_Ds = np.zeros((D_obs, D_input))
true_sigma_obs = np.eye(D_obs)
true_model = DefaultSLDS(
    K, D_obs, D_latent, D_input=D_input,
    mu_inits=true_mu_inits, sigma_inits=true_sigma_inits,
    As=true_As, Bs=true_Bs, sigma_statess=true_sigma_states,
    Cs=true_C, Ds=true_Ds, sigma_obss=true_sigma_obs)

# Simulate some data with a given discrete state sequence
inputs = np.ones((T, D_input))
z = np.arange(K).repeat(T // K)
Beispiel #6
0
from pylds.util import random_rotation
from pyslds.models import DefaultSLDS

npr.seed(0)

# Set parameters
K = 5
D_obs = 100
D_latent = 2
D_input = 1
T = 1000

# Make an LDS with known parameters
true_mu_inits = [np.ones(D_latent) for _ in range(K)]
true_sigma_inits = [np.eye(D_latent) for _ in range(K)]
true_As = [.9 * random_rotation(D_latent) for k in range(K)]
true_Bs = [3 * npr.randn(D_latent, D_input) for k in range(K)]
true_sigma_states = [np.eye(D_latent) for _ in range(K)]
true_C = np.random.randn(D_obs, D_latent)
true_Ds = np.zeros((D_obs, D_input))
true_sigma_obs = np.eye(D_obs)
true_model = DefaultSLDS(K,
                         D_obs,
                         D_latent,
                         D_input=D_input,
                         mu_inits=true_mu_inits,
                         sigma_inits=true_sigma_inits,
                         As=true_As,
                         Bs=true_Bs,
                         sigma_statess=true_sigma_states,
                         Cs=true_C,
Beispiel #7
0
from pylds.util import random_rotation
from pyslds.models import DefaultSLDS

npr.seed(0)

# Set parameters
K = 5
D_obs = 10
D_latent = 2
D_input = 1
T = 1000

# Make an LDS with known parameters
true_mu_inits = [np.ones(D_latent) for _ in range(K)]
true_sigma_inits = [np.eye(D_latent) for _ in range(K)]
true_As = [.99 * random_rotation(D_latent, theta=np.pi/((k+1) * 4)) for k in range(K)]
true_Bs = [3 * npr.randn(D_latent, D_input) for k in range(K)]
true_sigma_states = [np.eye(D_latent) for _ in range(K)]
true_C = np.random.randn(D_obs, D_latent)
true_Ds = np.zeros((D_obs, D_input))
true_sigma_obs = 0.05 * np.eye(D_obs)
true_model = DefaultSLDS(
    K, D_obs, D_latent, D_input=D_input,
    mu_inits=true_mu_inits, sigma_inits=true_sigma_inits,
    As=true_As, Bs=true_Bs, sigma_statess=true_sigma_states,
    Cs=true_C, Ds=true_Ds, sigma_obss=true_sigma_obs)

# Simulate some data with a given discrete state sequence
inputs = np.ones((T, D_input))
z = np.arange(K).repeat(T // K)
y, x, _ = true_model.generate(T, inputs=inputs, stateseq=z)
def simulate_nascar():
    assert K_true == 4
    As = [
        random_rotation(D_latent, np.pi / 24.),
        random_rotation(D_latent, np.pi / 48.)
    ]

    # Set the center points for each system
    centers = [np.array([+2.0, 0.]), np.array([-2.0, 0.])]
    bs = [
        -(A - np.eye(D_latent)).dot(center) for A, center in zip(As, centers)
    ]

    # Add a "right" state
    As.append(np.eye(D_latent))
    bs.append(np.array([+0.1, 0.]))

    # Add a "right" state
    As.append(np.eye(D_latent))
    bs.append(np.array([-0.25, 0.]))

    # Construct multinomial regression to divvy up the space
    w1, b1 = np.array([+1.0, 0.0]), np.array([-2.0])  # x + b > 0 -> x > -b
    w2, b2 = np.array([-1.0, 0.0]), np.array([-2.0])  # -x + b > 0 -> x < b
    w3, b3 = np.array([0.0, +1.0]), np.array([0.0])  # y > 0
    w4, b4 = np.array([0.0, -1.0]), np.array([0.0])  # y < 0

    reg_W = np.column_stack((100 * w1, 100 * w2, 10 * w3, 10 * w4))
    reg_b = np.concatenate((100 * b1, 100 * b2, 10 * b3, 10 * b4))

    # Make a recurrent SLDS with these params #
    dynamics_distns = [
        Regression(
            A=np.column_stack((A, b)),
            sigma=1e-4 * np.eye(D_latent),
            nu_0=D_latent + 2,
            S_0=1e-4 * np.eye(D_latent),
            M_0=np.zeros((D_latent, D_latent + 1)),
            K_0=np.eye(D_latent + 1),
        ) for A, b in zip(As, bs)
    ]

    init_dynamics_distns = [
        Gaussian(mu=np.array([0.0, 1.0]), sigma=1e-3 * np.eye(D_latent))
        for _ in range(K)
    ]

    C = np.hstack((npr.randn(D_obs, D_latent), np.zeros((D_obs, 1))))
    emission_distns = \
        DiagonalRegression(D_obs, D_latent+1,
                           A=C, sigmasq=1e-5 *np.ones(D_obs),
                           alpha_0=2.0, beta_0=2.0)

    model = SoftmaxRecurrentOnlySLDS(trans_params=dict(W=reg_W, b=reg_b),
                                     init_state_distn='uniform',
                                     init_dynamics_distns=init_dynamics_distns,
                                     dynamics_distns=dynamics_distns,
                                     emission_distns=emission_distns,
                                     alpha=3.)

    #########################
    # Sample from the model #
    #########################
    inputs = np.ones((T, 1))
    y, x, z = model.generate(T=T, inputs=inputs)

    # Maks off some data
    if mask_start == mask_stop:
        mask = None
    else:
        mask = np.ones((T, D_obs), dtype=bool)
        mask[mask_start:mask_stop] = False

    # Print the true parameters
    np.set_printoptions(precision=2)
    print("True W:\n{}".format(model.trans_distn.W))
    print("True logpi:\n{}".format(model.trans_distn.logpi))

    return model, inputs, z, x, y, mask