Beispiel #1
0
        def test(store_inverse):
            preprocessed_X = copy.copy(self.X)
            preprocessor = ZCA(store_inverse=store_inverse)

            dataset = DenseDesignMatrix(X=preprocessed_X,
                                        preprocessor=preprocessor,
                                        fit_preprocessor=True)

            preprocessed_X = dataset.get_design_matrix()
            assert_allclose(self.X, preprocessor.inverse(preprocessed_X))
Beispiel #2
0
    def test(store_inverse):
        rng = np.random.RandomState([1, 2, 3])
        X = as_floatX(rng.randn(15, 10))
        preprocessed_X = copy.copy(X)
        preprocessor = ZCA(store_inverse=store_inverse)

        dataset = DenseDesignMatrix(X=preprocessed_X,
                                    preprocessor=preprocessor,
                                    fit_preprocessor=True)

        preprocessed_X = dataset.get_design_matrix()

        assert_allclose(X, preprocessor.inverse(preprocessed_X))
    def test(store_inverse):
        rng = np.random.RandomState([1, 2, 3])
        X = as_floatX(rng.randn(15, 10))
        preprocessed_X = copy.copy(X)
        preprocessor = ZCA(store_inverse=store_inverse)

        dataset = DenseDesignMatrix(X=preprocessed_X,
                                    preprocessor=preprocessor,
                                    fit_preprocessor=True)

        preprocessed_X = dataset.get_design_matrix()

        assert_allclose(X, preprocessor.inverse(preprocessed_X))